Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimizing Resource Allocation and VNF Embedding in RAN Slicing (2207.11820v1)

Published 19 Jul 2022 in cs.NI

Abstract: 5G radio access network (RAN) with network slicing methodology plays a key role in the development of the next-generation network system. RAN slicing focuses on splitting the substrate's resources into a set of self-contained programmable RAN slices. Leveraged by network function virtualization (NFV), a RAN slice is constituted by various virtual network functions (VNFs) and virtual links that are embedded as instances on substrate nodes. In this work, we focus on the following fundamental tasks: i) establishing the theoretical foundation for constructing a VNF mapping plan for RAN slice recovery optimization and ii) developing algorithms needed to map/embed VNFs efficiently. In particular, we propose four efficient algorithms, including Resource-based Algorithm (RBA), Connectivity-based Algorithm (CBA), Group-based Algorithm (GBA), and Group-Connectivity-based Algorithm (GCBA) to solve the resource allocation and VNF mapping problem. Extensive experiments are also conducted to validate the robustness of RAN slicing via the proposed algorithms.

Citations (3)

Summary

We haven't generated a summary for this paper yet.