Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Hierarchical Semi-Supervised Contrastive Learning for Contamination-Resistant Anomaly Detection (2207.11789v1)

Published 24 Jul 2022 in cs.CV

Abstract: Anomaly detection aims at identifying deviant samples from the normal data distribution. Contrastive learning has provided a successful way to sample representation that enables effective discrimination on anomalies. However, when contaminated with unlabeled abnormal samples in training set under semi-supervised settings, current contrastive-based methods generally 1) ignore the comprehensive relation between training data, leading to suboptimal performance, and 2) require fine-tuning, resulting in low efficiency. To address the above two issues, in this paper, we propose a novel hierarchical semi-supervised contrastive learning (HSCL) framework, for contamination-resistant anomaly detection. Specifically, HSCL hierarchically regulates three complementary relations: sample-to-sample, sample-to-prototype, and normal-to-abnormal relations, enlarging the discrimination between normal and abnormal samples with a comprehensive exploration of the contaminated data. Besides, HSCL is an end-to-end learning approach that can efficiently learn discriminative representations without fine-tuning. HSCL achieves state-of-the-art performance in multiple scenarios, such as one-class classification and cross-dataset detection. Extensive ablation studies further verify the effectiveness of each considered relation. The code is available at https://github.com/GaoangW/HSCL.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub