Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Improved Super Resolution of MR Images Using CNNs and Vision Transformers (2207.11748v1)

Published 24 Jul 2022 in eess.IV and cs.CV

Abstract: State of the art magnetic resonance (MR) image super-resolution methods (ISR) using convolutional neural networks (CNNs) leverage limited contextual information due to the limited spatial coverage of CNNs. Vision transformers (ViT) learn better global context that is helpful in generating superior quality HR images. We combine local information of CNNs and global information from ViTs for image super resolution and output super resolved images that have superior quality than those produced by state of the art methods. We include extra constraints through multiple novel loss functions that preserve structure and texture information from the low resolution to high resolution images.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)