2000 character limit reached
Towards Using Fully Observable Policies for POMDPs (2207.11737v1)
Published 24 Jul 2022 in cs.LG and cs.AI
Abstract: Partially Observable Markov Decision Process (POMDP) is a framework applicable to many real world problems. In this work, we propose an approach to solve POMDPs with multimodal belief by relying on a policy that solves the fully observable version. By defininig a new, mixture value function based on the value function from the fully observable variant, we can use the corresponding greedy policy to solve the POMDP itself. We develop the mathematical framework necessary for discussion, and introduce a benchmark built on the task of Reconnaissance Blind TicTacToe. On this benchmark, we show that our policy outperforms policies ignoring the existence of multiple modes.