Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Degree Centrality Algorithms For Homogeneous Multilayer Networks (2207.11661v1)

Published 24 Jul 2022 in cs.IT, cs.SI, and math.IT

Abstract: Centrality measures for simple graphs/networks are well-defined and each has numerous main-memory algorithms. However, for modeling complex data sets with multiple types of entities and relationships, simple graphs are not ideal. Multilayer networks (or MLNs) have been proposed for modeling them and have been shown to be better suited in many ways. Since there are no algorithms for computing centrality measures directly on MLNs, existing strategies reduce (aggregate or collapse) the MLN layers to simple networks using Boolean AND or OR operators. This approach negates the benefits of MLN modeling as these computations tend to be expensive and furthermore results in loss of structure and semantics. In this paper, we propose heuristic-based algorithms for computing centrality measures (specifically, degree centrality) on MLNs directly (i.e., without reducing them to simple graphs) using a newly-proposed decoupling-based approach which is efficient as well as structure and semantics preserving. We propose multiple heuristics to calculate the degree centrality using the network decoupling-based approach and compare accuracy and precision with Boolean OR aggregated Homogeneous MLNs (HoMLN) for ground truth. The network decoupling approach can take advantage of parallelism and is more efficient compared to aggregation-based approaches. Extensive experimental analysis is performed on large synthetic and real-world data sets of varying characteristics to validate the accuracy and efficiency of our proposed algorithms.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.