Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Average-Case to (shifted) Worst-Case Reduction for the Trace Reconstruction Problem (2207.11489v2)

Published 23 Jul 2022 in cs.IT, cs.DS, math.IT, and math.PR

Abstract: The {\em insertion-deletion channel} takes as input a binary string $x \in{0, 1}n$, and outputs a string $\widetilde{x}$ where some of the bits have been deleted and others inserted independently at random. In the {\em trace reconstruction problem}, one is given many outputs (called {\em traces}) of the insertion-deletion channel on the same input message $x$, and asked to recover the input message. Nazarov and Peres (STOC 2017), and De, O'Donnell and Servedio (STOC 2017) showed that any string $x$ can be reconstructed from $\exp(O(n{1/3}))$ traces. Holden, Pemantle, Peres and Zhai (COLT 2018) adapt the techniques used to prove this upper bound, to an algorithm for the average-case trace reconstruction with a sample complexity of $\exp(O(\log{1/3} n))$. However, it is not clear how to apply their techniques more generally and in particular for the recent worst-case upper bound of $\exp(\widetilde{O}(n{1/5}))$ shown by Chase (STOC 2021) for the deletion-channel. We prove a general reduction from the average-case to smaller instances of a problem similar to worst-case. Using this reduction and a generalization of Chase's bound, we construct an improved average-case algorithm with a sample complexity of $\exp(\widetilde{O}(\log{1/5} n))$. Additionally, we show that Chase's upper-bound holds for the insertion-deletion channel as well.

Citations (4)

Summary

We haven't generated a summary for this paper yet.