Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Airfoil Optimization using Design-by-Morphing (2207.11448v4)

Published 23 Jul 2022 in math.GT, cs.CE, and math.OC

Abstract: We present Design-by-Morphing (DbM), a novel design methodology applicable to creating a search space for topology optimization of 2D airfoils. Most design techniques impose geometric constraints and sometimes designers' bias on the design space itself, thus restricting the novelty of the designs created, and only allowing for small local changes. We show that DbM methodology does not impose any such restrictions on the design space and allows for extrapolation from the search space, thus granting truly radical and large search space with a few design parameters. In comparison to other shape design methodologies, we apply DbM to create a search space for 2D airfoils. We optimize this airfoil shape design space for maximizing the lift-over-drag ratio, $CLD_{max}$, and stall angle tolerance, $\Delta \alpha$. Using a bi-objective genetic algorithm to optimize the DbM space, it is found that we create a Pareto-front of radical airfoils exhibiting remarkable properties for both objectives.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.