Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Airfoil Optimization using Design-by-Morphing (2207.11448v4)

Published 23 Jul 2022 in math.GT, cs.CE, and math.OC

Abstract: We present Design-by-Morphing (DbM), a novel design methodology applicable to creating a search space for topology optimization of 2D airfoils. Most design techniques impose geometric constraints and sometimes designers' bias on the design space itself, thus restricting the novelty of the designs created, and only allowing for small local changes. We show that DbM methodology does not impose any such restrictions on the design space and allows for extrapolation from the search space, thus granting truly radical and large search space with a few design parameters. In comparison to other shape design methodologies, we apply DbM to create a search space for 2D airfoils. We optimize this airfoil shape design space for maximizing the lift-over-drag ratio, $CLD_{max}$, and stall angle tolerance, $\Delta \alpha$. Using a bi-objective genetic algorithm to optimize the DbM space, it is found that we create a Pareto-front of radical airfoils exhibiting remarkable properties for both objectives.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.