Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Receptive Field-based Segmentation for Distributed CNN Inference Acceleration in Collaborative Edge Computing (2207.11293v1)

Published 22 Jul 2022 in cs.DC and cs.AI

Abstract: This paper studies inference acceleration using distributed convolutional neural networks (CNNs) in collaborative edge computing network. To avoid inference accuracy loss in inference task partitioning, we propose receptive field-based segmentation (RFS). To reduce the computation time and communication overhead, we propose a novel collaborative edge computing using fused-layer parallelization to partition a CNN model into multiple blocks of convolutional layers. In this scheme, the collaborative edge servers (ESs) only need to exchange small fraction of the sub-outputs after computing each fused block. In addition, to find the optimal solution of partitioning a CNN model into multiple blocks, we use dynamic programming, named as dynamic programming for fused-layer parallelization (DPFP). The experimental results show that DPFP can accelerate inference of VGG-16 up to 73% compared with the pre-trained model, which outperforms the existing work MoDNN in all tested scenarios. Moreover, we evaluate the service reliability of DPFP under time-variant channel, which shows that DPFP is an effective solution to ensure high service reliability with strict service deadline.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.