Papers
Topics
Authors
Recent
2000 character limit reached

Face editing with GAN -- A Review (2207.11227v1)

Published 12 Jul 2022 in cs.CV, cs.LG, cs.NE, and eess.IV

Abstract: In recent years, Generative Adversarial Networks (GANs) have become a hot topic among researchers and engineers that work with deep learning. It has been a ground-breaking technique which can generate new pieces of content of data in a consistent way. The topic of GANs has exploded in popularity due to its applicability in fields like image generation and synthesis, and music production and composition. GANs have two competing neural networks: a generator and a discriminator. The generator is used to produce new samples or pieces of content, while the discriminator is used to recognize whether the piece of content is real or generated. What makes it different from other generative models is its ability to learn unlabeled samples. In this review paper, we will discuss the evolution of GANs, several improvements proposed by the authors and a brief comparison between the different models. Index Terms generative adversarial networks, unsupervised learning, deep learning.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.