Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Generalized Identifiability Bounds for Mixture Models with Grouped Samples (2207.11164v1)

Published 22 Jul 2022 in math.ST, cs.LG, stat.ML, and stat.TH

Abstract: Recent work has shown that finite mixture models with $m$ components are identifiable, while making no assumptions on the mixture components, so long as one has access to groups of samples of size $2m-1$ which are known to come from the same mixture component. In this work we generalize that result and show that, if every subset of $k$ mixture components of a mixture model are linearly independent, then that mixture model is identifiable with only $(2m-1)/(k-1)$ samples per group. We further show that this value cannot be improved. We prove an analogous result for a stronger form of identifiability known as "determinedness" along with a corresponding lower bound. This independence assumption almost surely holds if mixture components are chosen randomly from a $k$-dimensional space. We describe some implications of our results for multinomial mixture models and topic modeling.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.