Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Towards Global Optimality in Cooperative MARL with the Transformation And Distillation Framework (2207.11143v3)

Published 12 Jul 2022 in cs.MA, cs.AI, and cs.LG

Abstract: Decentralized execution is one core demand in cooperative multi-agent reinforcement learning (MARL). Recently, most popular MARL algorithms have adopted decentralized policies to enable decentralized execution and use gradient descent as their optimizer. However, there is hardly any theoretical analysis of these algorithms taking the optimization method into consideration, and we find that various popular MARL algorithms with decentralized policies are suboptimal in toy tasks when gradient descent is chosen as their optimization method. In this paper, we theoretically analyze two common classes of algorithms with decentralized policies -- multi-agent policy gradient methods and value-decomposition methods to prove their suboptimality when gradient descent is used. In addition, we propose the Transformation And Distillation (TAD) framework, which reformulates a multi-agent MDP as a special single-agent MDP with a sequential structure and enables decentralized execution by distilling the learned policy on the derived ``single-agent" MDP. This approach uses a two-stage learning paradigm to address the optimization problem in cooperative MARL, maintaining its performance guarantee. Empirically, we implement TAD-PPO based on PPO, which can theoretically perform optimal policy learning in the finite multi-agent MDPs and shows significant outperformance on a large set of cooperative multi-agent tasks.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.