Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Emotion Separation and Recognition from a Facial Expression by Generating the Poker Face with Vision Transformers (2207.11081v4)

Published 22 Jul 2022 in cs.CV

Abstract: Representation learning and feature disentanglement have garnered significant research interest in the field of facial expression recognition (FER). The inherent ambiguity of emotion labels poses challenges for conventional supervised representation learning methods. Moreover, directly learning the mapping from a facial expression image to an emotion label lacks explicit supervision signals for capturing fine-grained facial features. In this paper, we propose a novel FER model, named Poker Face Vision Transformer or PF-ViT, to address these challenges. PF-ViT aims to separate and recognize the disturbance-agnostic emotion from a static facial image via generating its corresponding poker face, without the need for paired images. Inspired by the Facial Action Coding System, we regard an expressive face as the combined result of a set of facial muscle movements on one's poker face (i.e., an emotionless face). PF-ViT utilizes vanilla Vision Transformers, and its components are firstly pre-trained as Masked Autoencoders on a large facial expression dataset without emotion labels, yielding excellent representations. Subsequently, we train PF-ViT using a GAN framework. During training, the auxiliary task of poke face generation promotes the disentanglement between emotional and emotion-irrelevant components, guiding the FER model to holistically capture discriminative facial details. Quantitative and qualitative results demonstrate the effectiveness of our method, surpassing the state-of-the-art methods on four popular FER datasets.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.