Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Bound-preserving finite element approximations of the Keller-Segel equations (2207.10975v1)

Published 22 Jul 2022 in math.NA and cs.NA

Abstract: This paper aims to develop numerical approximations of the Keller--Segel equations that mimic at the discrete level the lower bounds and the energy law of the continuous problem. We solve these equations for two unknowns: the organism (or cell) density, which is a positive variable, and the chemoattractant density, which is a nonnegative variable. We propose two algorithms, which combine a stabilized finite element method and a semi-implicit time integration. The stabilization consists of a nonlinear artificial diffusion that employs a graph-Laplacian operator and a shock detector that localizes local extrema. As a result, both algorithms turn out to be nonlinear.Both algorithms can generate cell and chemoattractant numerical densities fulfilling lower bounds. However, the first algorithm requires a suitable constraint between the space and time discrete parameters, whereas the second one does not. We design the latter to attain a discrete energy law on acute meshes. We report some numerical experiments to validate the theoretical results on blowup and non-blowup phenomena. In the blowup setting, we identify a \textit{locking} phenomenon that relates the $L\infty(\Omega)$-norm to the $L1(\Omega)$-norm limiting the growth of the singularity when supported on a macroelement.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.