Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Geodesic-Former: a Geodesic-Guided Few-shot 3D Point Cloud Instance Segmenter (2207.10859v2)

Published 22 Jul 2022 in cs.CV

Abstract: This paper introduces a new problem in 3D point cloud: few-shot instance segmentation. Given a few annotated point clouds exemplified a target class, our goal is to segment all instances of this target class in a query point cloud. This problem has a wide range of practical applications where point-wise instance segmentation annotation is prohibitively expensive to collect. To address this problem, we present Geodesic-Former -- the first geodesic-guided transformer for 3D point cloud instance segmentation. The key idea is to leverage the geodesic distance to tackle the density imbalance of LiDAR 3D point clouds. The LiDAR 3D point clouds are dense near the object surface and sparse or empty elsewhere making the Euclidean distance less effective to distinguish different objects. The geodesic distance, on the other hand, is more suitable since it encodes the scene's geometry which can be used as a guiding signal for the attention mechanism in a transformer decoder to generate kernels representing distinct features of instances. These kernels are then used in a dynamic convolution to obtain the final instance masks. To evaluate Geodesic-Former on the new task, we propose new splits of the two common 3D point cloud instance segmentation datasets: ScannetV2 and S3DIS. Geodesic-Former consistently outperforms strong baselines adapted from state-of-the-art 3D point cloud instance segmentation approaches with a significant margin. Code is available at https://github.com/VinAIResearch/GeoFormer.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)