Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Sensitivity-enhanced generalized polynomial chaos for efficient uncertainty quantification (2207.10651v1)

Published 30 Jun 2022 in math.NA, cs.NA, math-ph, math.AP, math.MP, math.SP, math.ST, and stat.TH

Abstract: We present an enriched formulation of the Least Squares (LSQ) regression method for Uncertainty Quantification (UQ) using generalised polynomial chaos (gPC). More specifically, we enrich the linear system with additional equations for the gradient (or sensitivity) of the Quantity of Interest with respect to the stochastic variables. This sensitivity is computed very efficiently for all variables by solving an adjoint system of equations at each sampling point of the stochastic space. The associated computational cost is similar to one solution of the direct problem. For the selection of the sampling points, we apply a greedy algorithm which is based on the pivoted QR decomposition of the measurement matrix. We call the new approach sensitivity-enhanced generalised polynomial chaos, or se-gPC. We apply the method to several test cases to test accuracy and convergence with increasing chaos order, including an aerodynamic case with $40$ stochastic parameters. The method is found to produce accurate estimations of the statistical moments using the minimum number of sampling points. The computational cost scales as $\sim m{p-1}$, instead of $\sim mp$ of the standard LSQ formulation, where $m$ is the number of stochastic variables and $p$ the chaos order. The solution of the adjoint system of equations is implemented in many computational mechanics packages, thus the infrastructure exists for the application of the method to a wide variety of engineering problems.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.