Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Ensemble Learning for Efficient VVC Bitrate Ladder Prediction (2207.10317v2)

Published 21 Jul 2022 in eess.IV

Abstract: Changing the encoding parameters, in particular the video resolution, is a common practice before transcoding. To this end, streaming and broadcast platforms benefit from so-called bitrate ladders to determine the optimal resolution for given bitrates. However, the task of determining the bitrate ladder can usually be challenging as, on one hand, so-called fit-for-all static ladders would waste bandwidth, and on the other hand, fully specialized ladders are often not affordable in terms of computational complexity. In this paper, we propose an ML-based scheme for predicting the bitrate ladder based on the content of the video. The baseline of our solution predicts the bitrate ladder using two constituent methods, which require no encoding passes. To further enhance the performance of the constituent methods, we integrate a conditional ensemble method to aggregate their decisions, with a negligibly limited number of encoding passes. The experiment, carried out on the optimized software encoder implementation of the VVC standard, called VVenC, shows significant performance improvement. When compared to static bitrate ladder, the proposed method can offer about 13% bitrate reduction in terms of BD-BR with a negligible additional computational overhead. Conversely, when compared to the fully specialized bitrate ladder method, the proposed method can offer about 86% to 92% complexity reduction, at cost the of only 0.8% to 0.9% coding efficiency drop in terms of BD-BR.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube