Towards Accurate Open-Set Recognition via Background-Class Regularization (2207.10287v1)
Abstract: In open-set recognition (OSR), classifiers should be able to reject unknown-class samples while maintaining high closed-set classification accuracy. To effectively solve the OSR problem, previous studies attempted to limit latent feature space and reject data located outside the limited space via offline analyses, e.g., distance-based feature analyses, or complicated network architectures. To conduct OSR via a simple inference process (without offline analyses) in standard classifier architectures, we use distance-based classifiers instead of conventional Softmax classifiers. Afterwards, we design a background-class regularization strategy, which uses background-class data as surrogates of unknown-class ones during training phase. Specifically, we formulate a novel regularization loss suitable for distance-based classifiers, which reserves sufficiently large class-wise latent feature spaces for known classes and forces background-class samples to be located far away from the limited spaces. Through our extensive experiments, we show that the proposed method provides robust OSR results, while maintaining high closed-set classification accuracy.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.