Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

2D GANs Meet Unsupervised Single-view 3D Reconstruction (2207.10183v1)

Published 20 Jul 2022 in cs.CV

Abstract: Recent research has shown that controllable image generation based on pre-trained GANs can benefit a wide range of computer vision tasks. However, less attention has been devoted to 3D vision tasks. In light of this, we propose a novel image-conditioned neural implicit field, which can leverage 2D supervisions from GAN-generated multi-view images and perform the single-view reconstruction of generic objects. Firstly, a novel offline StyleGAN-based generator is presented to generate plausible pseudo images with full control over the viewpoint. Then, we propose to utilize a neural implicit function, along with a differentiable renderer to learn 3D geometry from pseudo images with object masks and rough pose initializations. To further detect the unreliable supervisions, we introduce a novel uncertainty module to predict uncertainty maps, which remedy the negative effect of uncertain regions in pseudo images, leading to a better reconstruction performance. The effectiveness of our approach is demonstrated through superior single-view 3D reconstruction results of generic objects.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.