Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Multi-modal Protein Knowledge Graph Construction and Applications (2207.10080v3)

Published 27 May 2022 in q-bio.QM, cs.AI, cs.CL, cs.IR, and cs.LG

Abstract: Existing data-centric methods for protein science generally cannot sufficiently capture and leverage biology knowledge, which may be crucial for many protein tasks. To facilitate research in this field, we create ProteinKG65, a knowledge graph for protein science. Using gene ontology and Uniprot knowledge base as a basis, we transform and integrate various kinds of knowledge with aligned descriptions and protein sequences, respectively, to GO terms and protein entities. ProteinKG65 is mainly dedicated to providing a specialized protein knowledge graph, bringing the knowledge of Gene Ontology to protein function and structure prediction. We also illustrate the potential applications of ProteinKG65 with a prototype. Our dataset can be downloaded at https://w3id.org/proteinkg65.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.