Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Detecting Harmful Online Conversational Content towards LGBTQIA+ Individuals (2207.10032v1)

Published 15 Jun 2022 in cs.CL

Abstract: Online discussions, panels, talk page edits, etc., often contain harmful conversational content i.e., hate speech, death threats and offensive language, especially towards certain demographic groups. For example, individuals who identify as members of the LGBTQIA+ community and/or BIPOC (Black, Indigenous, People of Color) are at higher risk for abuse and harassment online. In this work, we first introduce a real-world dataset that will enable us to study and understand harmful online conversational content. Then, we conduct several exploratory data analysis experiments to gain deeper insights from the dataset. We later describe our approach for detecting harmful online Anti-LGBTQIA+ conversational content, and finally, we implement two baseline machine learning models (i.e., Support Vector Machine and Logistic Regression), and fine-tune 3 pre-trained LLMs (BERT, RoBERTa, and HateBERT). Our findings verify that LLMs can achieve very promising performance on detecting online Anti-LGBTQIA+ conversational content detection tasks.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.