Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

PPAD-Complete Pure Approximate Nash Equilibria in Lipschitz Games (2207.09962v1)

Published 20 Jul 2022 in cs.GT

Abstract: Lipschitz games, in which there is a limit $\lambda$ (the Lipschitz value of the game) on how much a player's payoffs may change when some other player deviates, were introduced about 10 years ago by Azrieli and Shmaya. They showed via the probabilistic method that $n$-player Lipschitz games with $m$ strategies per player have pure $\epsilon$-approximate Nash equilibria, for $\epsilon\geq\lambda\sqrt{8n\log(2mn)}$. Here we provide the first hardness result for the corresponding computational problem, showing that even for a simple class of Lipschitz games (Lipschitz polymatrix games), finding pure $\epsilon$-approximate equilibria is PPAD-complete, for suitable pairs of values $(\epsilon(n), \lambda(n))$. Novel features of this result include both the proof of PPAD hardness (in which we apply a population game reduction from unrestricted polymatrix games) and the proof of containment in PPAD (by derandomizing the selection of a pure equilibrium from a mixed one). In fact, our approach implies containment in PPAD for any class of Lipschitz games where payoffs from mixed-strategy profiles can be deterministically computed.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.