Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

PPAD-Complete Pure Approximate Nash Equilibria in Lipschitz Games (2207.09962v1)

Published 20 Jul 2022 in cs.GT

Abstract: Lipschitz games, in which there is a limit $\lambda$ (the Lipschitz value of the game) on how much a player's payoffs may change when some other player deviates, were introduced about 10 years ago by Azrieli and Shmaya. They showed via the probabilistic method that $n$-player Lipschitz games with $m$ strategies per player have pure $\epsilon$-approximate Nash equilibria, for $\epsilon\geq\lambda\sqrt{8n\log(2mn)}$. Here we provide the first hardness result for the corresponding computational problem, showing that even for a simple class of Lipschitz games (Lipschitz polymatrix games), finding pure $\epsilon$-approximate equilibria is PPAD-complete, for suitable pairs of values $(\epsilon(n), \lambda(n))$. Novel features of this result include both the proof of PPAD hardness (in which we apply a population game reduction from unrestricted polymatrix games) and the proof of containment in PPAD (by derandomizing the selection of a pure equilibrium from a mixed one). In fact, our approach implies containment in PPAD for any class of Lipschitz games where payoffs from mixed-strategy profiles can be deterministically computed.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.