Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Integrated Finite Element Neural Network (I-FENN) for non-local continuum damage mechanics (2207.09908v2)

Published 14 Jul 2022 in cs.CE and physics.app-ph

Abstract: We present a new Integrated Finite Element Neural Network framework (I-FENN), with the objective to accelerate the numerical solution of nonlinear computational mechanics problems. We leverage the swift predictive capability of neural networks (NNs) and we embed them inside the finite element stiffness function, to compute element-level state variables and their derivatives within a nonlinear, iterative numerical solution. This process is conducted jointly with conventional finite element methods that involve shape functions: the NN receives input data that resembles the material point deformation and its output is used to construct element-level field variables such as the element Jacobian matrix and residual vector. Here we introduce I-FENN to the continuum damage analysis of quasi-brittle materials, and we establish a new non-local gradient-based damage framework which operates at the cost of a local damage approach. First, we develop a physics informed neural network (PINN) to resemble the non-local gradient model and then we train the neural network offline. The network learns to predict the non-local equivalent strain at each material point, as well as its derivative with respect to the local strain. Then, the PINN is integrated in the element stiffness definition and conducts the local to non-local strain transformation, whereas the two PINN outputs are used to construct the element Jacobian matrix and residual vector. This process is carried out within the nonlinear solver, until numerical convergence is achieved. The resulting method bears the computational cost of the conventional local damage approach, but ensures mesh-independent results and a diffused non-local strain and damage profile. As a result, the proposed method tackles the vital drawbacks of both the local and non-local gradient method, respectively being the mesh-dependence and additional computational cost.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.