Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

LR-Net: A Block-based Convolutional Neural Network for Low-Resolution Image Classification (2207.09531v5)

Published 19 Jul 2022 in cs.CV

Abstract: The success of CNN-based architecture on image classification in learning and extracting features made them so popular these days, but the task of image classification becomes more challenging when we apply state of art models to classify noisy and low-quality images. It is still difficult for models to extract meaningful features from this type of image due to its low-resolution and the lack of meaningful global features. Moreover, high-resolution images need more layers to train which means they take more time and computational power to train. Our method also addresses the problem of vanishing gradients as the layers become deeper in deep neural networks that we mentioned earlier. In order to address all these issues, we developed a novel image classification architecture, composed of blocks that are designed to learn both low level and global features from blurred and noisy low-resolution images. Our design of the blocks was heavily influenced by Residual Connections and Inception modules in order to increase performance and reduce parameter sizes. We also assess our work using the MNIST family datasets, with a particular emphasis on the Oracle-MNIST dataset, which is the most difficult to classify due to its low-quality and noisy images. We have performed in-depth tests that demonstrate the presented architecture is faster and more accurate than existing cutting-edge convolutional neural networks. Furthermore, due to the unique properties of our model, it can produce a better result with fewer parameters.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.