Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

All Paths Lead to Rome (2207.09439v1)

Published 19 Jul 2022 in cs.CC and cs.CG

Abstract: All roads lead to Rome is the core idea of the puzzle game Roma. It is played on an $n \times n$ grid consisting of quadratic cells. Those cells are grouped into boxes of at most four neighboring cells and are either filled, or to be filled, with arrows pointing in cardinal directions. The goal of the game is to fill the empty cells with arrows such that each box contains at most one arrow of each direction and regardless where we start, if we follow the arrows in the cells, we will always end up in the special Roma-cell. In this work, we study the computational complexity of the puzzle game Roma and show that completing a Roma board according to the rules is an \NP-complete task, counting the number of valid completions is #Ptime-complete, and determining the number of preset arrows needed to make the instance \emph{uniquely} solvable is $\Sigma_2P$-complete. We further show that the problem of completing a given Roma instance on an $n\times n$ board cannot be solved in time $\mathcal{O}\left(2{{o}(n)}\right)$ under ETH and give a matching dynamic programming algorithm based on the idea of Catalan structures.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.