Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

On Regularity Lemma and Barriers in Streaming and Dynamic Matching (2207.09354v1)

Published 19 Jul 2022 in cs.DS

Abstract: We present a new approach for finding matchings in dense graphs by building on Szemer\'edi's celebrated Regularity Lemma. This allows us to obtain non-trivial albeit slight improvements over longstanding bounds for matchings in streaming and dynamic graphs. In particular, we establish the following results for $n$-vertex graphs: * A deterministic single-pass streaming algorithm that finds a $(1-o(1))$-approximate matching in $o(n2)$ bits of space. This constitutes the first single-pass algorithm for this problem in sublinear space that improves over the $\frac{1}{2}$-approximation of the greedy algorithm. * A randomized fully dynamic algorithm that with high probability maintains a $(1-o(1))$-approximate matching in $o(n)$ worst-case update time per each edge insertion or deletion. The algorithm works even against an adaptive adversary. This is the first $o(n)$ update-time dynamic algorithm with approximation guarantee arbitrarily close to one. Given the use of regularity lemma, the improvement obtained by our algorithms over trivial bounds is only by some $(\log*{n}){\Theta(1)}$ factor. Nevertheless, in each case, they show that the ``right'' answer to the problem is not what is dictated by the previous bounds. Finally, in the streaming model, we also present a randomized $(1-o(1))$-approximation algorithm whose space can be upper bounded by the density of certain Ruzsa-Szemer\'edi (RS) graphs. While RS graphs by now have been used extensively to prove streaming lower bounds, ours is the first to use them as an upper bound tool for designing improved streaming algorithms.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 27 likes.

Upgrade to Pro to view all of the tweets about this paper: