Papers
Topics
Authors
Recent
2000 character limit reached

Contextual Similarity is More Valuable than Character Similarity: An Empirical Study for Chinese Spell Checking (2207.09217v3)

Published 17 Jul 2022 in cs.CL

Abstract: Chinese Spell Checking (CSC) task aims to detect and correct Chinese spelling errors. Recently, related researches focus on introducing character similarity from confusion set to enhance the CSC models, ignoring the context of characters that contain richer information. To make better use of contextual information, we propose a simple yet effective Curriculum Learning (CL) framework for the CSC task. With the help of our model-agnostic CL framework, existing CSC models will be trained from easy to difficult as humans learn Chinese characters and achieve further performance improvements. Extensive experiments and detailed analyses on widely used SIGHAN datasets show that our method outperforms previous state-of-the-art methods. More instructively, our study empirically suggests that contextual similarity is more valuable than character similarity for the CSC task.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.