Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

KinD-LCE Curve Estimation And Retinex Fusion On Low-Light Image (2207.09210v3)

Published 19 Jul 2022 in cs.CV

Abstract: Low-light images often suffer from noise and color distortion. Object detection, semantic segmentation, instance segmentation, and other tasks are challenging when working with low-light images because of image noise and chromatic aberration. We also found that the conventional Retinex theory loses information in adjusting the image for low-light tasks. In response to the aforementioned problem, this paper proposes an algorithm for low illumination enhancement. The proposed method, KinD-LCE, uses a light curve estimation module to enhance the illumination map in the Retinex decomposed image, improving the overall image brightness. An illumination map and reflection map fusion module were also proposed to restore the image details and reduce detail loss. Additionally, a TV(total variation) loss function was applied to eliminate noise. Our method was trained on the GladNet dataset, known for its diverse collection of low-light images, tested against the Low-Light dataset, and evaluated using the ExDark dataset for downstream tasks, demonstrating competitive performance with a PSNR of 19.7216 and SSIM of 0.8213.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.