Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

PaMILO: A Solver for Multi-Objective Mixed Integer Linear Optimization and Beyond (2207.09155v2)

Published 19 Jul 2022 in cs.DM, cs.MS, and math.OC

Abstract: In multi-objective optimization, several potentially conflicting objective functions need to be optimized. Instead of one optimal solution, we look for the set of so called non-dominated solutions. An important subset is the set of non-dominated extreme points. Finding it is a computationally hard problem in general. While solvers for similar problems exist, there are none known for multi-objective mixed integer linear programs (MOMILPs) or multi-objective mixed integer quadratically constrained quadratic programs (MOMIQCQPs). We present PaMILO, the first solver for finding non-dominated extreme points of MOMILPs and MOMIQCQPs. It can be found on github under github.com/FritzBo/PaMILO. PaMILO provides an easy-to-use interface and is implemented in C++17. It solves occurring subproblems employing either CPLEX or Gurobi. PaMILO adapts the Dual-Benson algorithm for multi-objective linear programming (MOLP). As it was previously only defined for MOLPs, we describe how it can be adapted for MOMILPs, MOMIQCQPs and even more problem classes in the future.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.