Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Investigating Bayesian optimization for expensive-to-evaluate black box functions: Application in fluid dynamics (2207.09154v2)

Published 19 Jul 2022 in cs.LG

Abstract: Bayesian optimization provides an effective method to optimize expensive-to-evaluate black box functions. It has been widely applied to problems in many fields, including notably in computer science, e.g. in machine learning to optimize hyperparameters of neural networks, and in engineering, e.g. in fluid dynamics to optimize control strategies that maximize drag reduction. This paper empirically studies and compares the performance and the robustness of common Bayesian optimization algorithms on a range of synthetic test functions to provide general guidance on the design of Bayesian optimization algorithms for specific problems. It investigates the choice of acquisition function, the effect of different numbers of training samples, the exact and Monte Carlo based calculation of acquisition functions, and both single-point and multi-point optimization. The test functions considered cover a wide selection of challenges and therefore serve as an ideal test bed to understand the performance of Bayesian optimization to specific challenges, and in general. To illustrate how these findings can be used to inform a Bayesian optimization setup tailored to a specific problem, two simulations in the area of computational fluid dynamics are optimized, giving evidence that suitable solutions can be found in a small number of evaluations of the objective function for complex, real problems. The results of our investigation can similarly be applied to other areas, such as machine learning and physical experiments, where objective functions are expensive to evaluate and their mathematical expressions are unknown.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.