Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Residual and Attentional Architectures for Vector-Symbols (2207.08953v1)

Published 18 Jul 2022 in cs.LG and cs.NE

Abstract: Vector-symbolic architectures (VSAs) provide methods for computing which are highly flexible and carry unique advantages. Concepts in VSAs are represented by 'symbols,' long vectors of values which utilize properties of high-dimensional spaces to represent and manipulate information. In this new work, we combine efficiency of the operations provided within the framework of the Fourier Holographic Reduced Representation (FHRR) VSA with the power of deep networks to construct novel VSA based residual and attention-based neural network architectures. Using an attentional FHRR architecture, we demonstrate that the same network architecture can address problems from different domains (image classification and molecular toxicity prediction) by encoding different information into the network's inputs, similar to the Perceiver model. This demonstrates a novel application of VSAs and a potential path to implementing state-of-the-art neural models on neuromorphic hardware.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
Citations (3)

Summary

We haven't generated a summary for this paper yet.