Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Conditional DETR V2: Efficient Detection Transformer with Box Queries (2207.08914v1)

Published 18 Jul 2022 in cs.CV

Abstract: In this paper, we are interested in Detection Transformer (DETR), an end-to-end object detection approach based on a transformer encoder-decoder architecture without hand-crafted postprocessing, such as NMS. Inspired by Conditional DETR, an improved DETR with fast training convergence, that presented box queries (originally called spatial queries) for internal decoder layers, we reformulate the object query into the format of the box query that is a composition of the embeddings of the reference point and the transformation of the box with respect to the reference point. This reformulation indicates the connection between the object query in DETR and the anchor box that is widely studied in Faster R-CNN. Furthermore, we learn the box queries from the image content, further improving the detection quality of Conditional DETR still with fast training convergence. In addition, we adopt the idea of axial self-attention to save the memory cost and accelerate the encoder. The resulting detector, called Conditional DETR V2, achieves better results than Conditional DETR, saves the memory cost and runs more efficiently. For example, for the DC$5$-ResNet-$50$ backbone, our approach achieves $44.8$ AP with $16.4$ FPS on the COCO $val$ set and compared to Conditional DETR, it runs $1.6\times$ faster, saves $74$\% of the overall memory cost, and improves $1.0$ AP score.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.