Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Learning differentiable solvers for systems with hard constraints (2207.08675v2)

Published 18 Jul 2022 in cs.LG

Abstract: We introduce a practical method to enforce partial differential equation (PDE) constraints for functions defined by neural networks (NNs), with a high degree of accuracy and up to a desired tolerance. We develop a differentiable PDE-constrained layer that can be incorporated into any NN architecture. Our method leverages differentiable optimization and the implicit function theorem to effectively enforce physical constraints. Inspired by dictionary learning, our model learns a family of functions, each of which defines a mapping from PDE parameters to PDE solutions. At inference time, the model finds an optimal linear combination of the functions in the learned family by solving a PDE-constrained optimization problem. Our method provides continuous solutions over the domain of interest that accurately satisfy desired physical constraints. Our results show that incorporating hard constraints directly into the NN architecture achieves much lower test error when compared to training on an unconstrained objective.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.