Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Pansharpening via Frequency-Aware Fusion Network with Explicit Similarity Constraints (2207.08602v3)

Published 18 Jul 2022 in eess.IV

Abstract: The process of fusing a high spatial resolution (HR) panchromatic (PAN) image and a low spatial resolution (LR) multispectral (MS) image to obtain an HRMS image is known as pansharpening. With the development of convolutional neural networks, the performance of pansharpening methods has been improved, however, the blurry effects and the spectral distortion still exist in their fusion results due to the insufficiency in details learning and the frequency mismatch between MSand PAN. Therefore, the improvement of spatial details at the premise of reducing spectral distortion is still a challenge. In this paper, we propose a frequency-aware fusion network (FAFNet) together with a novel high-frequency feature similarity loss to address above mentioned problems. FAFNet is mainly composed of two kinds of blocks, where the frequency aware blocks aim to extract features in the frequency domain with the help of discrete wavelet transform (DWT) layers, and the frequency fusion blocks reconstruct and transform the features from frequency domain to spatial domain with the assistance of inverse DWT (IDWT) layers. Finally, the fusion results are obtained through a convolutional block. In order to learn the correspondence, we also propose a high-frequency feature similarity loss to constrain the HF features derived from PAN and MS branches, so that HF features of PAN can reasonably be used to supplement that of MS. Experimental results on three datasets at both reduced- and full-resolution demonstrate the superiority of the proposed method compared with several state-of-the-art pansharpening models.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.