Papers
Topics
Authors
Recent
2000 character limit reached

BrainCog: A Spiking Neural Network based Brain-inspired Cognitive Intelligence Engine for Brain-inspired AI and Brain Simulation (2207.08533v2)

Published 18 Jul 2022 in cs.NE

Abstract: Spiking neural networks (SNNs) have attracted extensive attentions in Brain-inspired Artificial Intelligence and computational neuroscience. They can be used to simulate biological information processing in the brain at multiple scales. More importantly, SNNs serve as an appropriate level of abstraction to bring inspirations from brain and cognition to Artificial Intelligence. In this paper, we present the Brain-inspired Cognitive Intelligence Engine (BrainCog) for creating brain-inspired AI and brain simulation models. BrainCog incorporates different types of spiking neuron models, learning rules, brain areas, etc., as essential modules provided by the platform. Based on these easy-to-use modules, BrainCog supports various brain-inspired cognitive functions, including Perception and Learning, Decision Making, Knowledge Representation and Reasoning, Motor Control, and Social Cognition. These brain-inspired AI models have been effectively validated on various supervised, unsupervised, and reinforcement learning tasks, and they can be used to enable AI models to be with multiple brain-inspired cognitive functions. For brain simulation, BrainCog realizes the function simulation of decision-making, working memory, the structure simulation of the Neural Circuit, and whole brain structure simulation of Mouse brain, Macaque brain, and Human brain. An AI engine named BORN is developed based on BrainCog, and it demonstrates how the components of BrainCog can be integrated and used to build AI models and applications. To enable the scientific quest to decode the nature of biological intelligence and create AI, BrainCog aims to provide essential and easy-to-use building blocks, and infrastructural support to develop brain-inspired spiking neural network based AI, and to simulate the cognitive brains at multiple scales. The online repository of BrainCog can be found at https://github.com/braincog-x.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (172)
  1. W.ย Maass, โ€œNetworks of spiking neurons: the third generation of neural network models,โ€ Neural networks, vol.ย 10, no.ย 9, pp. 1659โ€“1671, 1997.
  2. M.-O. Gewaltig and M.ย Diesmann, โ€œNest (neural simulation tool),โ€ Scholarpedia, vol.ย 2, no.ย 4, p. 1430, 2007.
  3. M.ย Stimberg, R.ย Brette, and D.ย F. Goodman, โ€œBrian 2, an intuitive and efficient neural simulator,โ€ Elife, vol.ย 8, p. e47314, 2019.
  4. D.ย F. Goodman and R.ย Brette, โ€œThe brian simulator,โ€ Frontiers in neuroscience, vol.ย 3, p.ย 26, 2009.
  5. P.ย U. Diehl and M.ย Cook, โ€œUnsupervised learning of digit recognition using spike-timing-dependent plasticity,โ€ Frontiers in computational neuroscience, vol.ย 9, p.ย 99, 2015.
  6. H.ย Hazan, D.ย J. Saunders, H.ย Khan, D.ย Patel, D.ย T. Sanghavi, H.ย T. Siegelmann, and R.ย Kozma, โ€œBindsnet: A machine learning-oriented spiking neural networks library in python,โ€ Frontiers in neuroinformatics, p.ย 89, 2018.
  7. J.ย P. Dominguez-Morales, Q.ย Liu, R.ย James, D.ย Gutierrez-Galan, A.ย Jimenez-Fernandez, S.ย Davidson, and S.ย Furber, โ€œDeep spiking neural network model for time-variant signals classification: a real-time speech recognition approach,โ€ in 2018 International Joint Conference on Neural Networks (IJCNN).ย ย ย IEEE, 2018, pp. 1โ€“8.
  8. S.ย Loiselle, J.ย Rouat, D.ย Pressnitzer, and S.ย Thorpe, โ€œExploration of rank order coding with spiking neural networks for speech recognition,โ€ in Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., vol.ย 4.ย ย ย IEEE, 2005, pp. 2076โ€“2080.
  9. S.ย Kim, S.ย Park, B.ย Na, and S.ย Yoon, โ€œSpiking-yolo: spiking neural network for energy-efficient object detection,โ€ in Proceedings of the AAAI Conference on Artificial Intelligence, vol.ย 34, no.ย 07, 2020, pp. 11โ€‰270โ€“11โ€‰277.
  10. Y.ย Wu, L.ย Deng, G.ย Li, J.ย Zhu, and L.ย Shi, โ€œSpatio-temporal backpropagation for training high-performance spiking neural networks,โ€ Frontiers in neuroscience, vol.ย 12, p. 331, 2018.
  11. W.ย Tan, D.ย Patel, and R.ย Kozma, โ€œStrategy and benchmark for converting deep q-networks to event-driven spiking neural networks,โ€ in Proceedings of the AAAI conference on artificial intelligence, vol.ย 35, no.ย 11, 2021, pp. 9816โ€“9824.
  12. W.ย Fang, Y.ย Chen, J.ย Ding, D.ย Chen, Z.ย Yu, H.ย Zhou, Y.ย Tian, and other contributors, โ€œSpikingjelly,โ€ https://github.com/fangwei123456/spikingjelly, 2020.
  13. C.ย Wang, Y.ย Jiang, X.ย Liu, X.ย Lin, X.ย Zou, Z.ย Ji, and S.ย Wu, โ€œA just-in-time compilation approach for neural dynamics simulation,โ€ in Neural Information Processing, T.ย Mantoro, M.ย Lee, M.ย A. Ayu, K.ย W. Wong, and A.ย N. Hidayanto, Eds.ย ย ย Cham: Springer International Publishing, 2021, pp. 15โ€“26.
  14. C.ย Eliasmith, T.ย C. Stewart, X.ย Choo, T.ย Bekolay, T.ย DeWolf, Y.ย Tang, and D.ย Rasmussen, โ€œA large-scale model of the functioning brain,โ€ science, vol. 338, no. 6111, pp. 1202โ€“1205, 2012.
  15. T.ย Bekolay, J.ย Bergstra, E.ย Hunsberger, T.ย DeWolf, T.ย C. Stewart, D.ย Rasmussen, X.ย Choo, A.ย R. Voelker, and C.ย Eliasmith, โ€œNengo: a python tool for building large-scale functional brain models,โ€ Frontiers in neuroinformatics, vol.ย 7, p.ย 48, 2014.
  16. Y.ย Zeng, C.ย Liu, and T.ย Tan, โ€œRetrospect and outlook of brain-inspired intelligence research (in chinese),โ€ The Chinese Journal of Computers, vol.ย 39, no.ย 1, pp. 212โ€“222, 2016.
  17. G.-q. Bi and M.-m. Poo, โ€œSynaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type,โ€ Journal of neuroscience, vol.ย 18, no.ย 24, pp. 10โ€‰464โ€“10โ€‰472, 1998.
  18. Y.ย Wu, L.ย Deng, G.ย Li, J.ย Zhu, and L.ย Shi, โ€œSpatio-Temporal Backpropagation for Training High-Performance Spiking Neural Networks,โ€ Front. Neurosci., vol.ย 12, p. 331, May 2018.
  19. H.ย Zheng, Y.ย Wu, L.ย Deng, Y.ย Hu, and G.ย Li, โ€œGoing Deeper With Directly-Trained Larger Spiking Neural Networks,โ€ Proceedings of the AAAI Conference on Artificial Intelligence, vol.ย 35, no.ย 12, pp. 11โ€‰062โ€“11โ€‰070, May 2021.
  20. W.ย Fang, Z.ย Yu, Y.ย Chen, T.ย Masquelier, T.ย Huang, and Y.ย Tian, โ€œIncorporating Learnable Membrane Time Constant to Enhance Learning of Spiking Neural Networks,โ€ in 2021 IEEE/CVF International Conference on Computer Vision (ICCV).ย ย ย Montreal, QC, Canada: IEEE, Oct. 2021, pp. 2641โ€“2651.
  21. Y.ย Li, S.ย Deng, X.ย Dong, R.ย Gong, and S.ย Gu, โ€œA free lunch from ann: Towards efficient, accurate spiking neural networks calibration,โ€ arXiv preprint arXiv:2106.06984, 2021.
  22. B.ย Han and K.ย Roy, โ€œDeep spiking neural network: Energy efficiency through time based coding,โ€ in Computer Visionโ€“ECCV 2020: 16th European Conference, Glasgow, UK, August 23โ€“28, 2020, Proceedings, Part X 16.ย ย ย Springer, 2020, pp. 388โ€“404.
  23. B.ย Han, G.ย Srinivasan, and K.ย Roy, โ€œRmp-snn: Residual membrane potential neuron for enabling deeper high-accuracy and low-latency spiking neural network,โ€ in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 13โ€‰558โ€“13โ€‰567.
  24. Y.ย Wang and Y.ย Zeng, โ€œMultisensory concept learning framework based on spiking neural networks,โ€ Frontiers in Systems Neuroscience, vol.ย 16, 2022. [Online]. Available: https://www.frontiersin.org/article/10.3389/fnsys.2022.845177
  25. Y.ย Sun, Y.ย Zeng, and T.ย Zhang, โ€œQuantum superposition inspired spiking neural network,โ€ iScience, vol.ย 24, no.ย 8, p. 102880, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2589004221008488
  26. F.ย Zhao, Y.ย Zeng, G.ย Wang, J.ย Bai, and B.ย Xu, โ€œA brain-inspired decision making model based on top-down biasing of prefrontal cortex to basal ganglia and its application in autonomous uav explorations,โ€ Cognitive Computation, vol.ย 10, no.ย 2, pp. 296โ€“306, 2018.
  27. Y.ย Sun, Y.ย Zeng, and Y.ย Li, โ€œSolving the spike feature information vanishing problem in spiking deep q network with potential based normalization,โ€ arXiv preprint arXiv:2206.03654, 2022.
  28. Q.ย Liang, Y.ย Zeng, and B.ย Xu, โ€œTemporal-sequential learning with a brain-inspired spiking neural network and its application to musical memory,โ€ Frontiers in Computational Neuroscience, vol.ย 14, p.ย 51, 07 2020.
  29. Q.ย Liang and Y.ย Zeng, โ€œStylistic composition of melodies based on a brain-inspired spiking neural network,โ€ Frontiers in systems neuroscience, vol.ย 15, p.ย 21, 2021.
  30. H.ย Fang, Y.ย Zeng, and F.ย Zhao, โ€œBrain inspired sequences production by spiking neural networks with reward-modulated stdp,โ€ Frontiers in Computational Neuroscience, vol.ย 15, p.ย 8, 2021.
  31. H.ย Fang, Y.ย Zeng, J.ย Tang, Y.ย Wang, Y.ย Liang, and X.ย Liu, โ€œBrain-inspired graph spiking neural networks for commonsense knowledge representation and reasoning,โ€ arXiv preprint arXiv:2207.05561, 2022.
  32. H.ย Fang and Y.ย Zeng, โ€œA brain-inspired causal reasoning model based on spiking neural networks,โ€ in 2021 International Joint Conference on Neural Networks (IJCNN).ย ย ย IEEE, 2021, pp. 1โ€“5.
  33. Y.ย Zeng, Y.ย Zhao, J.ย Bai, and B.ย Xu, โ€œToward robot self-consciousness (ii): brain-inspired robot bodily self model for self-recognition,โ€ Cognitive Computation, vol.ย 10, no.ย 2, pp. 307โ€“320, 2018.
  34. Z.ย Zhao, E.ย Lu, F.ย Zhao, Y.ย Zeng, and Y.ย Zhao, โ€œA brain-inspired theory of mind spiking neural network for reducing safety risks of other agents,โ€ Frontiers in neuroscience, p. 446, 2022.
  35. F.ย Zhao, Y.ย Zeng, A.ย Guo, H.ย Su, and B.ย Xu, โ€œA neural algorithm for drosophila linear and nonlinear decision-making,โ€ Scientific Reports, vol.ย 10, no.ย 1, pp. 1โ€“16, 2020.
  36. Q.ย Zhang, Y.ย Zeng, T.ย Zhang, and T.ย Yang, โ€œComparison between human and rodent neurons for persistent activity performance: A biologically plausible computational investigation,โ€ Frontiers in systems neuroscience, p.ย 98, 2021.
  37. L.ย F. Abbott, โ€œLapicqueโ€™s introduction of the integrate-and-fire model neuron (1907),โ€ Brain research bulletin, vol.ย 50, no. 5-6, pp. 303โ€“304, 1999.
  38. Fourcaud-Trocmรฉ, Nicolas, Hansel, David, V.ย Vreeswijk, Carl, and Brunel, โ€œHow spike generation mechanisms determine the neuronal response to fluctuating inputs.โ€ Journal of Neuroscience, 2003.
  39. R.ย Brette and W.ย Gerstner, โ€œAdaptive exponential integrate-and-fire model as an effective description of neuronal activity,โ€ Journal of neurophysiology, vol.ย 94, no.ย 5, pp. 3637โ€“3642, 2005.
  40. E.ย M. Izhikevich, โ€œSimple model of spiking neurons,โ€ IEEE Transactions on neural networks, vol.ย 14, no.ย 6, pp. 1569โ€“1572, 2003.
  41. A.ย L. Hodgkin and A.ย F. Huxley, โ€œA quantitative description of membrane current and its application to conduction and excitation in nerve,โ€ The Journal of physiology, vol. 117, no.ย 4, p. 500, 1952.
  42. G.ย Wang, Y.ย Zeng, and B.ย Xu, โ€œA spiking neural network based autonomous reinforcement learning model and its application in decision making,โ€ in International Conference on Brain Inspired Cognitive Systems.ย ย ย Springer, 2016, pp. 125โ€“137.
  43. D.ย J. Amit, N.ย Brunel, and M.ย Tsodyks, โ€œCorrelations of cortical hebbian reverberations: theory versus experiment,โ€ Journal of Neuroscience, vol.ย 14, no.ย 11, pp. 6435โ€“6445, 1994.
  44. E.ย L. Bienenstock, L.ย N. Cooper, and P.ย W. Munro, โ€œTheory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex,โ€ Journal of Neuroscience, vol.ย 2, no.ย 1, pp. 32โ€“48, 1982.
  45. W.ย Maass and H.ย Markram, โ€œSynapses as dynamic memory buffers,โ€ Neural Networks, vol.ย 15, no.ย 2, pp. 155โ€“161, 2002.
  46. E.ย M. Izhikevich, โ€œSolving the distal reward problem through linkage of stdp and dopamine signaling,โ€ Cerebral Cortex, vol.ย 17, pp. 2443โ€“2452, 2007.
  47. E.ย D. Adrian and Y.ย Zotterman, โ€œThe impulses produced by sensory nerve endings: Part 3. impulses set up by touch and pressure,โ€ The Journal of physiology, vol.ย 61, no.ย 4, p. 465, 1926.
  48. J.ย Kim, H.ย Kim, S.ย Huh, J.ย Lee, and K.ย Choi, โ€œDeep neural networks with weighted spikes,โ€ Neurocomputing, vol. 311, pp. 373โ€“386, 2018.
  49. S.ย Thorpe, D.ย Fize, and C.ย Marlot, โ€œSpeed of processing in the human visual system,โ€ nature, vol. 381, no. 6582, pp. 520โ€“522, 1996.
  50. B.ย Rueckauer and S.-C. Liu, โ€œConversion of analog to spiking neural networks using sparse temporal coding,โ€ in 2018 IEEE international symposium on circuits and systems (ISCAS).ย ย ย IEEE, 2018, pp. 1โ€“5.
  51. S.ย M. Bohte, J.ย N. Kok, and H.ย Laย Poutre, โ€œError-backpropagation in temporally encoded networks of spiking neurons,โ€ Neurocomputing, vol.ย 48, no. 1-4, pp. 17โ€“37, 2002.
  52. R.ย Quianย Quiroga and S.ย Panzeri, โ€œExtracting information from neuronal populations: information theory and decoding approaches,โ€ Nature Reviews Neuroscience, vol.ย 10, no.ย 3, pp. 173โ€“185, 2009.
  53. D.ย Li, J.ย Wu, and D.ย Peng, โ€œOnline traffic accident spatial-temporal post-impact prediction model on highways based on spiking neural networks,โ€ Journal of advanced transportation, vol. 2021, 2021.
  54. V.ย S. Chakravarthy, D.ย Joseph, and R.ย S. Bapi, โ€œWhat do the basal ganglia do? a modeling perspective,โ€ Biological cybernetics, vol. 103, no.ย 3, pp. 237โ€“253, 2010.
  55. P.ย Redgrave, T.ย J. Prescott, and K.ย Gurney, โ€œThe basal ganglia: a vertebrate solution to the selection problem?โ€ Neuroscience, vol.ย 89, no.ย 4, pp. 1009โ€“1023, 1999.
  56. A.ย Parent and L.-N. Hazrati, โ€œFunctional anatomy of the basal ganglia. i. the cortico-basal ganglia-thalamo-cortical loop,โ€ Brain research reviews, vol.ย 20, no.ย 1, pp. 91โ€“127, 1995.
  57. J.ย L. Lanciego, N.ย Luquin, and J.ย A. Obeso, โ€œFunctional neuroanatomy of the basal ganglia,โ€ Cold Spring Harbor perspectives in medicine, vol.ย 2, no.ย 12, p. a009621, 2012.
  58. A.ย Bechara, H.ย Damasio, D.ย Tranel, and S.ย W. Anderson, โ€œDissociation of working memory from decision making within the human prefrontal cortex,โ€ Journal of neuroscience, vol.ย 18, no.ย 1, pp. 428โ€“437, 1998.
  59. S.ย G. Rao, G.ย V. Williams, and P.ย S. Goldman-Rakic, โ€œIsodirectional tuning of adjacent interneurons and pyramidal cells during working memory: evidence for microcolumnar organization in pfc,โ€ Journal of neurophysiology, vol.ย 81, no.ย 4, pp. 1903โ€“1916, 1999.
  60. M.ย Dโ€™Esposito, B.ย R. Postle, and B.ย Rypma, โ€œPrefrontal cortical contributions to working memory: evidence from event-related fmri studies,โ€ Executive control and the frontal lobe: Current issues, pp. 3โ€“11, 2000.
  61. A.ย H. Lara and J.ย D. Wallis, โ€œThe role of prefrontal cortex in working memory: a mini review,โ€ Frontiers in systems neuroscience, vol.ย 9, p. 173, 2015.
  62. J.ย N. Wood and J.ย Grafman, โ€œHuman prefrontal cortex: processing and representational perspectives,โ€ Nature reviews neuroscience, vol.ย 4, no.ย 2, pp. 139โ€“147, 2003.
  63. K.ย L. Macuga and S.ย H. Frey, โ€œSelective responses in right inferior frontal and supramarginal gyri differentiate between observed movements of oneself vs. another,โ€ Neuropsychologia, vol.ย 49, no.ย 5, pp. 1202โ€“1207, 2011.
  64. B.ย Milner, L.ย R.ย Squire, and E.ย R.ย Kandel, โ€œCognitive neuroscience and the study of memory,โ€ Neuron, vol.ย 20, p. 445โ€“468, 1998.
  65. M.ย L. Smith and B.ย Milner, โ€œThe role of the right hippocampus in the recall of spatial location,โ€ Neuropsychologia, vol.ย 19, no.ย 6, pp. 781โ€“793, 1981.
  66. Y.ย Dan and M.-m. Poo, โ€œSpike timing-dependent plasticity of neural circuits,โ€ Neuron, vol.ย 44, no.ย 1, pp. 23โ€“30, 2004.
  67. A.ย D. Craig, โ€œHow do you feelโ€”now? the anterior insula and human awareness,โ€ Nature reviews neuroscience, vol.ย 10, no.ย 1, pp. 59โ€“70, 2009.
  68. E.ย M. Izhikevich and G.ย M. Edelman, โ€œLarge-scale model of mammalian thalamocortical systems,โ€ Proceedings of the National Academy of Sciences, vol. 105, no.ย 9, pp. 3593โ€“3598, 2008. [Online]. Available: https://www.pnas.org/doi/abs/10.1073/pnas.0712231105
  69. A.ย Ishai, L.ย G. Ungerleider, A.ย Martin, J.ย L. Schouten, and J.ย V. Haxby, โ€œDistributed representation of objects in the human ventral visual pathway,โ€ Proceedings of the National Academy of Sciences, vol.ย 96, no.ย 16, pp. 9379โ€“9384, 1999.
  70. E.ย Kobatake and K.ย Tanaka, โ€œNeuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex,โ€ Journal of neurophysiology, vol.ย 71, no.ย 3, pp. 856โ€“867, 1994.
  71. D.ย H. Hubel and T.ย N. Wiesel, โ€œReceptive fields, binocular interaction and functional architecture in the catโ€™s visual cortex,โ€ The Journal of physiology, vol. 160, no.ย 1, p. 106, 1962.
  72. G.ย Geldberg, โ€œSupplementary motor area structure and function: review and hypothesis,โ€ Behav Brain Sci., vol.ย 8, pp. 567โ€“615, 1985.
  73. H.ย Mushiake, M.ย Inase, and J.ย Tanji, โ€œNeuronal activity in the primate premotor, supplementary, and precentral motor cortex during visually guided and internally determined sequential movements,โ€ Journal of neurophysiology, vol.ย 66, no.ย 3, pp. 705โ€“718, 1991.
  74. C.ย Gerloff, B.ย Corwell, R.ย Chen, M.ย Hallett, and L.ย G. Cohen, โ€œStimulation over the human supplementary motor area interferes with the organization of future elements in complex motor sequences.โ€ Brain: a journal of neurology, vol. 120, no.ย 9, pp. 1587โ€“1602, 1997.
  75. A.ย P. Georgopoulos, โ€œMotor cortex and cognitive processing.โ€ 1995.
  76. S.ย Kakei, D.ย S. Hoffman, and P.ย L. Strick, โ€œMuscle and movement representations in the primary motor cortex,โ€ Science, vol. 285, no. 5436, pp. 2136โ€“2139, 1999.
  77. P.ย L. Strick, R.ย P. Dum, J.ย A. Fiez etย al., โ€œCerebellum and nonmotor function,โ€ Annual review of neuroscience, vol.ย 32, no.ย 1, pp. 413โ€“434, 2009.
  78. R.ย S. Zucker and W.ย G. Regehr, โ€œShort-term synaptic plasticity,โ€ Annual review of physiology, vol.ย 64, no.ย 1, pp. 355โ€“405, 2002.
  79. A.ย Tavanaei and A.ย S. Maida, โ€œBio-inspired spiking convolutional neural network using layer-wise sparse coding and stdp learning,โ€ arXiv preprint arXiv:1611.03000, 2016.
  80. โ€”โ€”, โ€œMulti-layer unsupervised learning in a spiking convolutional neural network,โ€ in 2017 International Joint Conference on Neural Networks (IJCNN).ย ย ย IEEE, 2017, pp. 2023โ€“2030.
  81. P.ย Falez, P.ย Tirilly, I.ย M. Bilasco, P.ย Devienne, and P.ย Boulet, โ€œMulti-layered spiking neural network with target timestamp threshold adaptation and stdp,โ€ arXiv preprint arXiv:1904.01908, 2019.
  82. T.ย Zhang, Y.ย Zeng, D.ย Zhao, and M.ย Shi, โ€œA plasticity-centric approach to train the non-differential spiking neural networks,โ€ in Thirty-Second AAAI Conference on Artificial Intelligence, 2018.
  83. T.ย Zhang, Y.ย Zeng, D.ย Zhao, and B.ย Xu, โ€œBrain-inspired balanced tuning for spiking neural networks.โ€ in IJCAI, 2018, pp. 1653โ€“1659.
  84. D.ย J. Felleman and D.ย E. Van, โ€œDistributed hierarchical processing in the primate cerebral cortex.โ€ Cerebral cortex (New York, NY: 1991), vol.ย 1, no.ย 1, pp. 1โ€“47, 1991.
  85. O.ย Sporns and J.ย D. Zwi, โ€œThe small world of the cerebral cortex,โ€ Neuroinformatics, vol.ย 2, no.ย 2, pp. 145โ€“162, 2004.
  86. D.ย Zhao, Y.ย Zeng, T.ย Zhang, M.ย Shi, and F.ย Zhao, โ€œGlsnn: A multi-layer spiking neural network based on global feedback alignment and local stdp plasticity,โ€ Frontiers in Computational Neuroscience, vol.ย 14, 2020.
  87. Y.ย Bengio, N.ย Lรฉonard, and A.ย Courville, โ€œEstimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation,โ€ Aug. 2013.
  88. S.ย M. Bohte, โ€œError-backpropagation in networks of fractionally predictive spiking neurons,โ€ in International Conference on Artificial Neural Networks.ย ย ย Springer, 2011, pp. 60โ€“68.
  89. G.ย Shen, D.ย Zhao, and Y.ย Zeng, โ€œBackpropagation with biologically plausible spatiotemporal adjustment for training deep spiking neural networks,โ€ Patterns, p. 100522, 2022.
  90. Y.ย Dong, D.ย Zhao, Y.ย Li, and Y.ย Zeng, โ€œAn unsupervised spiking neural network inspired by biologically plausible learning rules and connections,โ€ 2022. [Online]. Available: https://arxiv.org/abs/2207.02727
  91. Y.ย Zeng, T.ย Zhang, and B.ย Xu, โ€œImproving multi-layer spiking neural networks by incorporating brain-inspired rules,โ€ Science China Information Sciences, vol.ย 60, no.ย 5, pp. 1โ€“11, 2017.
  92. Y.ย Li and Y.ย Zeng, โ€œEfficient and accurate conversion of spiking neural network with burst spikes,โ€ arXiv preprint arXiv:2204.13271, 2022.
  93. Y.ย Li, X.ย He, Y.ย Dong, Q.ย Kong, and Y.ย Zeng, โ€œSpike calibration: Fast and accurate conversion of spiking neural network for object detection and segmentation,โ€ arXiv preprint arXiv:2207.02702, 2022.
  94. C.ย Blakemore, R.ย H. Carpenter, and M.ย A. Georgeson, โ€œLateral inhibition between orientation detectors in the human visual system,โ€ Nature, vol. 228, no. 5266, pp. 37โ€“39, 1970.
  95. D.ย Lynott and L.ย Connell, โ€œModality exclusivity norms for 423 object properties,โ€ Behavior Research Methods, vol.ย 41, no.ย 2, pp. 558โ€“564, 2009.
  96. โ€”โ€”, โ€œModality exclusivity norms for 400 nouns: The relationship between perceptual experience and surface word form,โ€ Behavior research methods, vol.ย 45, no.ย 2, pp. 516โ€“526, 2013.
  97. J.ย R. Binder, L.ย L. Conant, C.ย J. Humphries, L.ย Fernandino, S.ย B. Simons, M.ย Aguilar, and R.ย H. Desai, โ€œToward a brain-based componential semantic representation,โ€ Cognitive neuropsychology, vol.ย 33, no. 3-4, pp. 130โ€“174, 2016.
  98. D.ย Lynott, L.ย Connell, M.ย Brysbaert, J.ย Brand, and J.ย Carney, โ€œThe lancaster sensorimotor norms: multidimensional measures of perceptual and action strength for 40,000 english words,โ€ Behavior Research Methods, pp. 1โ€“21, 2019.
  99. E.ย Agirre, E.ย Alfonseca, K.ย Hall, J.ย Kravalova, M.ย Pasca, and A.ย Soroa, โ€œA study on similarity and relatedness using distributional and wordnet-based approaches,โ€ 2009.
  100. E.ย H. Huang, R.ย Socher, C.ย D. Manning, and A.ย Y. Ng, โ€œImproving word representations via global context and multiple word prototypes,โ€ in Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2012, pp. 873โ€“882.
  101. K.ย McRae, G.ย S. Cree, M.ย S. Seidenberg, and C.ย McNorgan, โ€œSemantic feature production norms for a large set of living and nonliving things,โ€ Behavior research methods, vol.ย 37, no.ย 4, pp. 547โ€“559, 2005.
  102. B.ย J. Devereux, L.ย K. Tyler, J.ย Geertzen, and B.ย Randall, โ€œThe centre for speech, language and the brain (cslb) concept property norms,โ€ Behavior research methods, vol.ย 46, no.ย 4, pp. 1119โ€“1127, 2014.
  103. M.ย J. Frank and E.ย D. Claus, โ€œAnatomy of a decision: striato-orbitofrontal interactions in reinforcement learning, decision making, and reversal.โ€ Psychological review, vol. 113, no.ย 2, p. 300, 2006.
  104. I.ย Silkis, โ€œThe cortico-basal ganglia-thalamocortical circuit with synaptic plasticity. i. modification rules for excitatory and inhibitory synapses in the striatum,โ€ Biosystems, vol.ย 57, no.ย 3, pp. 187โ€“196, 2000.
  105. X.ย Wang, Z.-G. Hou, F.ย Lv, M.ย Tan, and Y.ย Wang, โ€œMobile robotsโ€™ modular navigation controller using spiking neural networks,โ€ Neurocomputing, vol. 134, pp. 230โ€“238, 2014.
  106. J.ย C.ย V. Tieck, L.ย Steffen, J.ย Kaiser, A.ย Roennau, and R.ย Dillmann, โ€œControlling a robot arm for target reaching without planning using spiking neurons,โ€ in 2018 IEEE 17th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC), 2018, pp. 111โ€“116.
  107. G.ย Tang, N.ย Kumar, R.ย Yoo, and K.ย Michmizos, โ€œDeep reinforcement learning with population-coded spiking neural network for continuous control,โ€ in Conference on Robot Learning.ย ย ย PMLR, 2021, pp. 2016โ€“2029.
  108. G.ย Huang, Z.ย Liu, L.ย Van Derย Maaten, and K.ย Q. Weinberger, โ€œDensely connected convolutional networks,โ€ in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 4700โ€“4708.
  109. H.ย Merchant, D.ย L. Harrington, and W.ย H. Meck, โ€œNeural basis of the perception and estimation of time,โ€ Annual Review of Neuroscience, vol.ย 36, no.ย 1, pp. 313โ€“336, 2013.
  110. N.ย J. Fortin, K.ย L. Agster, and H.ย B. Eichenbaum, โ€œCritical role of the hippocampus in memory for sequences of events,โ€ Nature Neuroscience, vol.ย 5, no.ย 5, pp. 458โ€“462, 2002.
  111. B.ย Krueger, โ€œClassical piano midi page,โ€ 2018. [Online]. Available: http://piano-midi.de/
  112. A.ย Dietrich, โ€œThe cognitive neuroscience of creativity,โ€ Psychonomic bulletin & review, vol.ย 11, no.ย 6, pp. 1011โ€“1026, 2004.
  113. R.ย Jung, B.ย Mead, J.ย Carrasco, and R.ย Barrow, โ€œThe structure of creative cognition in the human brain,โ€ Frontiers in Human Neuroence, vol.ย 7, p. 330, 2013.
  114. Y.ย Xie, P.ย Hu, J.ย Li, J.ย Chen, W.ย Song, X.-J. Wang, T.ย Yang, S.ย Dehaene, S.ย Tang, B.ย Min etย al., โ€œGeometry of sequence working memory in macaque prefrontal cortex,โ€ Science, vol. 375, no. 6581, pp. 632โ€“639, 2022.
  115. N.ย Frรฉmaux and W.ย Gerstner, โ€œNeuromodulated spike-timing-dependent plasticity, and theory of three-factor learning rules,โ€ Frontiers in Neural Circuits, vol.ย 9, p.ย 85, 2016.
  116. V.ย C. Pammi, K.ย P. Miyapuram, R.ย S. Bapi, and K.ย Doya, โ€œChunking phenomenon in complex sequential skill learning in humans,โ€ in International Conference on Neural Information Processing.ย ย ย Springer, 2004, pp. 294โ€“299.
  117. X.ย Jiang, T.ย Long, W.ย Cao, J.ย Li, S.ย Dehaene, and L.ย Wang, โ€œProduction of supra-regular spatial sequences by macaque monkeys,โ€ Current Biology, vol.ย 28, no.ย 12, pp. 1851โ€“1859, 2018.
  118. M.ย L. Schlichting and A.ย R. Preston, โ€œThe hippocampus and memory integration: building knowledge to navigate future decisions,โ€ in The hippocampus from cells to systems.ย ย ย Springer, 2017, pp. 405โ€“437.
  119. S.ย Ramirez, X.ย Liu, P.-A. Lin, J.ย Suh, M.ย Pignatelli, R.ย L. Redondo, T.ย J. Ryan, and S.ย Tonegawa, โ€œCreating a false memory in the hippocampus,โ€ Science, vol. 341, no. 6144, pp. 387โ€“391, 2013.
  120. J.ย C. Robynย Speer and C.ย Havasi, โ€œConceptnet 5.5: An open multilingual graph of general knowledge,โ€ vol. abs/1612.03975, 2017. [Online]. Available: http://arxiv.org/abs/1612.03975
  121. M.ย Sugiura, C.ย M. Miyauchi, Y.ย Kotozaki, Y.ย Akimoto, T.ย Nozawa, Y.ย Yomogida, S.ย Hanawa, Y.ย Yamamoto, A.ย Sakuma, S.ย Nakagawa etย al., โ€œNeural mechanism for mirrored self-face recognition,โ€ Cerebral Cortex, vol.ย 25, no.ย 9, pp. 2806โ€“2814, 2015.
  122. S.ย G. Shamay-Tsoory, S.ย Shur, L.ย Barcai-Goodman, S.ย Medlovich, H.ย Harari, and Y.ย Levkovitz, โ€œDissociation of cognitive from affective components of theory of mind in schizophrenia,โ€ Psychiatry Research, vol. 149, no. 1-3, pp. 11โ€“23, Jan. 2007. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0165178106001934
  123. C.ย L. Sebastian, N.ย M.ย G. Fontaine, G.ย Bird, S.-J. Blakemore, S.ย A. Deย Brito, E.ย J.ย P. McCrory, and E.ย Viding, โ€œNeural processing associated with cognitive and affective Theory of mind in adolescents and adults,โ€ Social Cognitive and Affective Neuroscience, vol.ย 7, no.ย 1, pp. 53โ€“63, Jan. 2012. [Online]. Available: https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsr023
  124. M.ย Dennis, N.ย Simic, E.ย D. Bigler, T.ย Abildskov, A.ย Agostino, H.ย G. Taylor, K.ย Rubin, K.ย Vannatta, C.ย A. Gerhardt, T.ย Stancin etย al., โ€œCognitive, affective, and conative theory of mind (ToM) in children with traumatic brain injury,โ€ Developmental cognitive neuroscience, vol.ย 5, pp. 25โ€“39, 2013.
  125. A.ย Abu-Akel and S.ย Shamay-Tsoory, โ€œNeuroanatomical and neurochemical bases of theory of mind,โ€ Neuropsychologia, vol.ย 49, no.ย 11, pp. 2971โ€“2984, Sep. 2011. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0028393211003368
  126. C.ย E. Hartwright, I.ย A. Apperly, and P.ย C. Hansen, โ€œMultiple roles for executive control in beliefโ€“desire reasoning: Distinct neural networks are recruited for self perspective inhibition and complexity of reasoning,โ€ NeuroImage, vol.ย 61, no.ย 4, pp. 921โ€“930, jul 2012. [Online]. Available: https://doi.org/10.1016%2Fj.neuroimage.2012.03.012
  127. โ€”โ€”, โ€œThe special case of self-perspective inhibition in mental, but not non-mental, representation,โ€ Neuropsychologia, vol.ย 67, pp. 183โ€“192, jan 2015. [Online]. Available: https://doi.org/10.1016%2Fj.neuropsychologia.2014.12.015
  128. J.ย Koster-Hale and R.ย Saxe, โ€œTheory of mind: a neural prediction problem,โ€ Neuron, vol.ย 79, no.ย 5, pp. 836โ€“848, Sep. 2013. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S089662731300754X
  129. S.ย Suzuki, N.ย Harasawa, K.ย Ueno, J.ย L. Gardner, N.ย Ichinohe, M.ย Haruno, K.ย Cheng, and H.ย Nakahara, โ€œLearning to simulate othersโ€™ decisions,โ€ Neuron, vol.ย 74, no.ย 6, pp. 1125โ€“1137, 2012.
  130. G.ย G. Gallup, โ€œChimpanzees: self-recognition,โ€ Science, vol. 167, no. 3914, pp. 86โ€“87, 1970.
  131. S.ย D. Suรกrez and G.ย G. Gallupย Jr, โ€œSelf-recognition in chimpanzees and orangutans, but not gorillas,โ€ Journal of human evolution, vol.ย 10, no.ย 2, pp. 175โ€“188, 1981.
  132. V.ย Walraven, L.ย Vanย Elsacker, and R.ย Verheyen, โ€œReactions of a group of pygmy chimpanzees (pan paniscus) to their mirror-images: Evidence of self-recognition,โ€ Primates, vol.ย 36, no.ย 1, pp. 145โ€“150, 1995.
  133. F.ย G. Patterson and R.ย H. Cohn, โ€œSelf-recognition and self-awareness in lowland gorillas,โ€ 1994.
  134. S.ย Posada and M.ย Colell, โ€œAnother gorilla (gorilla gorilla gorilla) recognizes himself in a mirror,โ€ American Journal of Primatology: Official Journal of the American Society of Primatologists, vol.ย 69, no.ย 5, pp. 576โ€“583, 2007.
  135. J.ย M. Plotnik, F.ย B. Deย Waal, and D.ย Reiss, โ€œSelf-recognition in an asian elephant,โ€ Proceedings of the National Academy of Sciences, vol. 103, no.ย 45, pp. 17โ€‰053โ€“17โ€‰057, 2006.
  136. K.ย Marten and S.ย Psarakos, โ€œEvidence of self-awareness in the bottlenose dolphin (tursiops truncatus),โ€ 1994.
  137. F.ย Delfour and K.ย Marten, โ€œMirror image processing in three marine mammal species: killer whales (orcinus orca), false killer whales (pseudorca crassidens) and california sea lions (zalophus californianus),โ€ Behavioural processes, vol.ย 53, no.ย 3, pp. 181โ€“190, 2001.
  138. L.ย Chang, Q.ย Fang, S.ย Zhang, M.-m. Poo, and N.ย Gong, โ€œMirror-induced self-directed behaviors in rhesus monkeys after visual-somatosensory training,โ€ Current Biology, vol.ย 25, no.ย 2, pp. 212โ€“217, 2015.
  139. S.ย Tang and A.ย Guo, โ€œChoice behavior of drosophila facing contradictory visual cues,โ€ Science, vol. 294, no. 5546, pp. 1543โ€“1547, 2001.
  140. K.ย Zhang, J.ย Z. Guo, Y.ย Peng, W.ย Xi, and A.ย Guo, โ€œDopamine-mushroom body circuit regulates saliency-based decision-making in drosophila,โ€ science, vol. 316, no. 5833, pp. 1901โ€“1904, 2007.
  141. M.ย Zhou, N.ย Chen, J.ย Tian, J.ย Zeng, Y.ย Zhang, X.ย Zhang, J.ย Guo, J.ย Sun, Y.ย Li, A.ย Guo etย al., โ€œSuppression of gabaergic neurons through d2-like receptor secures efficient conditioning in drosophila aversive olfactory learning,โ€ Proceedings of the National Academy of Sciences, vol. 116, no.ย 11, pp. 5118โ€“5125, 2019.
  142. E.ย K. Miller, โ€œThe prefontral cortex and cognitive control,โ€ Nature reviews neuroscience, vol.ย 1, no.ย 1, pp. 59โ€“65, 2000.
  143. A.ย Nieder and E.ย K. Miller, โ€œCoding of cognitive magnitude: Compressed scaling of numerical information in the primate prefrontal cortex,โ€ Neuron, vol.ย 37, no.ย 1, pp. 149โ€“157, 2003.
  144. S.ย Bishop, J.ย Duncan, M.ย Brett, and A.ย D. Lawrence, โ€œPrefrontal cortical function and anxiety: controlling attention to threat-related stimuli,โ€ Nature neuroscience, vol.ย 7, no.ย 2, pp. 184โ€“188, 2004.
  145. E.ย Koechlin, C.ย Ody, and F.ย Kouneiher, โ€œThe architecture of cognitive control in the human prefrontal cortex,โ€ Science, vol. 302, no. 5648, pp. 1181โ€“1185, 2003.
  146. J.ย Hass, L.ย Hertรคg, and D.ย Durstewitz, โ€œA detailed data-driven network model of prefrontal cortex reproduces key features of in vivo activity,โ€ PLoS computational biology, vol.ย 12, no.ย 5, p. e1004930, 2016.
  147. A.ย Shapson-Coe, M.ย Januszewski, D.ย R. Berger, A.ย Pope, Y.ย Wu, T.ย Blakely, R.ย L. Schalek, P.ย H. Li, S.ย Wang, J.ย Maitin-Shepard etย al., โ€œA connectomic study of a petascale fragment of human cerebral cortex,โ€ BioRxiv, 2021.
  148. C.ย Beaulieu, โ€œNumerical data on neocortical neurons in adult rat, with special reference to the gaba population,โ€ Brain research, vol. 609, no. 1-2, pp. 284โ€“292, 1993.
  149. J.ย DeFelipe, โ€œThe evolution of the brain, the human nature of cortical circuits, and intellectual creativity,โ€ Frontiers in neuroanatomy, vol.ย 5, p.ย 29, 2011.
  150. J.ย R. Gibson, M.ย Beierlein, and B.ย W. Connors, โ€œTwo networks of electrically coupled inhibitory neurons in neocortex,โ€ Nature, vol. 402, no. 6757, pp. 75โ€“79, 1999.
  151. W.-J. Gao, Y.ย Wang, and P.ย S. Goldman-Rakic, โ€œDopamine modulation of perisomatic and peridendritic inhibition in prefrontal cortex,โ€ Journal of Neuroscience, vol.ย 23, no.ย 5, pp. 1622โ€“1630, 2003.
  152. G.ย Eyal, M.ย B. Verhoog, G.ย Testa-Silva, Y.ย Deitcher, J.ย C. Lodder, R.ย Benavides-Piccione, J.ย Morales, J.ย DeFelipe, C.ย P. deย Kock, H.ย D. Mansvelder etย al., โ€œUnique membrane properties and enhanced signal processing in human neocortical neurons,โ€ Elife, vol.ย 5, p. e16553, 2016.
  153. Q.ย Zhang, Y.ย Zeng, and T.ย Yang, โ€œComputational investigation of contributions from different subtypes of interneurons in prefrontal cortex for information maintenance,โ€ Scientific Reports, vol.ย 10, no.ย 1, p. 4671, 2020.
  154. Binzegger, Tom, Douglas, Rodney, J., Martin, Kevan, A., and C., โ€œA quantitative map of the circuit of cat primary visual cortex.โ€ Journal of Neuroscience, vol.ย 24, no.ย 39, pp. 8441โ€“8453, 2004.
  155. M.ย J. Richardson, N.ย Brunel, and V.ย Hakim, โ€œFrom subthreshold to firing-rate resonance,โ€ Journal of neurophysiology, vol.ย 89, no.ย 5, pp. 2538โ€“2554, 2003.
  156. X.ย Jiang, S.ย Shen, C.ย R. Cadwell, P.ย Berens, F.ย Sinz, A.ย S. Ecker, S.ย Patel, and A.ย S. Tolias, โ€œPrinciples of connectivity among morphologically defined cell types in adult neocortex,โ€ Science, vol. 350, no. 6264, p. aac9462, 2015.
  157. E.ย M. Izhikevich and G.ย M. Edelman, โ€œLarge-scale model of mammalian thalamocortical systems,โ€ Proceedings of the national academy of sciences, vol. 105, no.ย 9, pp. 3593โ€“3598, 2008.
  158. T.ย Tchumatchenko and C.ย Clopath, โ€œOscillations emerging from noise-driven steady state in networks with electrical synapses and subthreshold resonance,โ€ Nature communications, vol.ย 5, no.ย 1, pp. 1โ€“9, 2014.
  159. S.ย W. Oh, J.ย A. Harris, L.ย Ng, B.ย Winslow, N.ย Cain, S.ย Mihalas, Q.ย Wang, C.ย Lau, L.ย Kuan, A.ย M. Henry etย al., โ€œA mesoscale connectome of the mouse brain,โ€ Nature, vol. 508, no. 7495, pp. 207โ€“214, 2014.
  160. H.ย Markram, M.ย Toledo-Rodriguez, Y.ย Wang, A.ย Gupta, G.ย Silberberg, and C.ย Wu, โ€œInterneurons of the neocortical inhibitory system,โ€ Nature reviews neuroscience, vol.ย 5, no.ย 10, pp. 793โ€“807, 2004.
  161. D.ย S. Modha and R.ย Singh, โ€œNetwork architecture of the long-distance pathways in the macaque brain,โ€ Proceedings of the National Academy of Sciences, vol. 107, no.ย 30, pp. 13โ€‰485โ€“13โ€‰490, 2010.
  162. T.ย Zhang, Y.ย Zeng, and B.ย Xu, โ€œA computational approach towards the microscale mouse brain connectome from the mesoscale,โ€ Journal of integrative neuroscience, vol.ย 16, no.ย 3, p. 291โ€”306, 2017.
  163. R.ย Bakker, T.ย Wachtler, and M.ย Diesmann, โ€œCocomac 2.0 and the future of tract-tracing databases,โ€ Frontiers in neuroinformatics, vol.ย 6, pp. 30โ€“30, Dec 2012.
  164. R.ย Chaudhuri, K.ย Knoblauch, M.ย A. Gariel, H.ย Kennedy, and X.-J. Wang, โ€œA large-scale circuit mechanism for hierarchical dynamical processing in the primate cortex,โ€ Neuron, vol.ย 88, pp. 419โ€“431, 2015.
  165. C.ย E. Collins, D.ย C. Airey, N.ย A. Young, D.ย B. Leitch, and J.ย H. Kaas, โ€œNeuron densities vary across and within cortical areas in primates,โ€ Proceedings of the National Academy of Sciences, vol. 107, no.ย 36, pp. 15โ€‰927โ€“15โ€‰932, 2010.
  166. X.ย Liu, Y.ย Zeng, T.ย Zhang, and B.ย Xu, โ€œParallel brain simulator: A multi-scale and parallel brain-inspired neural network modeling and simulation platform,โ€ Cognitive Computation, vol.ย 8, no.ย 5, pp. 967โ€“981, Oct 2016.
  167. T.ย L. Davis and P.ย Sterling, โ€œMicrocircuitry of cat visual cortex: Classification of neurons in layer iv of area 17, and identification of the patterns of lateral geniculate input,โ€ Journal of Comparative Neurology, vol. 188, no.ย 4, pp. 599โ€“627, 1979.
  168. L.ย Fan, H.ย Li, J.ย Zhuo, Y.ย Zhang, J.ย Wang, L.ย Chen, Z.ย Yang, C.ย Chu, S.ย Xie, A.ย R. Laird, P.ย T. Fox, S.ย B. Eickhoff, C.ย Yu, and T.ย Jiang, โ€œThe human brainnetome atlas: A new brain atlas based on connectional architecture,โ€ Cerebral cortex (New York, N.Y. : 1991), vol.ย 26, no.ย 8, pp. 3508โ€“3526, Aug 2016.
  169. A.ย Klein and J.ย Tourville, โ€œ101 labeled brain images and a consistent human cortical labeling protocol,โ€ Frontiers in neuroscience, vol.ย 6, pp. 171โ€“171, Dec 2012.
  170. B.ย Han, F.ย Zhao, Y.ย Zeng, and G.ย Shen, โ€œDevelopmental plasticity-inspired adaptive pruning for deep spiking and artificial neural networks,โ€ 2022.
  171. G.ย Shen, D.ย Zhao, Y.ย Dong, and Y.ย Zeng, โ€œBio-inspired neural architecture search for efficient spiking neural networks,โ€ 2022.
  172. K.-C. Peng, T.ย Chen, A.ย Sadovnik, and A.ย C. Gallagher, โ€œA mixed bag of emotions: Model, predict, and transfer emotion distributions,โ€ in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 860โ€“868.
Citations (57)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.