BrainCog: A Spiking Neural Network based Brain-inspired Cognitive Intelligence Engine for Brain-inspired AI and Brain Simulation (2207.08533v2)
Abstract: Spiking neural networks (SNNs) have attracted extensive attentions in Brain-inspired Artificial Intelligence and computational neuroscience. They can be used to simulate biological information processing in the brain at multiple scales. More importantly, SNNs serve as an appropriate level of abstraction to bring inspirations from brain and cognition to Artificial Intelligence. In this paper, we present the Brain-inspired Cognitive Intelligence Engine (BrainCog) for creating brain-inspired AI and brain simulation models. BrainCog incorporates different types of spiking neuron models, learning rules, brain areas, etc., as essential modules provided by the platform. Based on these easy-to-use modules, BrainCog supports various brain-inspired cognitive functions, including Perception and Learning, Decision Making, Knowledge Representation and Reasoning, Motor Control, and Social Cognition. These brain-inspired AI models have been effectively validated on various supervised, unsupervised, and reinforcement learning tasks, and they can be used to enable AI models to be with multiple brain-inspired cognitive functions. For brain simulation, BrainCog realizes the function simulation of decision-making, working memory, the structure simulation of the Neural Circuit, and whole brain structure simulation of Mouse brain, Macaque brain, and Human brain. An AI engine named BORN is developed based on BrainCog, and it demonstrates how the components of BrainCog can be integrated and used to build AI models and applications. To enable the scientific quest to decode the nature of biological intelligence and create AI, BrainCog aims to provide essential and easy-to-use building blocks, and infrastructural support to develop brain-inspired spiking neural network based AI, and to simulate the cognitive brains at multiple scales. The online repository of BrainCog can be found at https://github.com/braincog-x.
- W.ย Maass, โNetworks of spiking neurons: the third generation of neural network models,โ Neural networks, vol.ย 10, no.ย 9, pp. 1659โ1671, 1997.
- M.-O. Gewaltig and M.ย Diesmann, โNest (neural simulation tool),โ Scholarpedia, vol.ย 2, no.ย 4, p. 1430, 2007.
- M.ย Stimberg, R.ย Brette, and D.ย F. Goodman, โBrian 2, an intuitive and efficient neural simulator,โ Elife, vol.ย 8, p. e47314, 2019.
- D.ย F. Goodman and R.ย Brette, โThe brian simulator,โ Frontiers in neuroscience, vol.ย 3, p.ย 26, 2009.
- P.ย U. Diehl and M.ย Cook, โUnsupervised learning of digit recognition using spike-timing-dependent plasticity,โ Frontiers in computational neuroscience, vol.ย 9, p.ย 99, 2015.
- H.ย Hazan, D.ย J. Saunders, H.ย Khan, D.ย Patel, D.ย T. Sanghavi, H.ย T. Siegelmann, and R.ย Kozma, โBindsnet: A machine learning-oriented spiking neural networks library in python,โ Frontiers in neuroinformatics, p.ย 89, 2018.
- J.ย P. Dominguez-Morales, Q.ย Liu, R.ย James, D.ย Gutierrez-Galan, A.ย Jimenez-Fernandez, S.ย Davidson, and S.ย Furber, โDeep spiking neural network model for time-variant signals classification: a real-time speech recognition approach,โ in 2018 International Joint Conference on Neural Networks (IJCNN).ย ย ย IEEE, 2018, pp. 1โ8.
- S.ย Loiselle, J.ย Rouat, D.ย Pressnitzer, and S.ย Thorpe, โExploration of rank order coding with spiking neural networks for speech recognition,โ in Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., vol.ย 4.ย ย ย IEEE, 2005, pp. 2076โ2080.
- S.ย Kim, S.ย Park, B.ย Na, and S.ย Yoon, โSpiking-yolo: spiking neural network for energy-efficient object detection,โ in Proceedings of the AAAI Conference on Artificial Intelligence, vol.ย 34, no.ย 07, 2020, pp. 11โ270โ11โ277.
- Y.ย Wu, L.ย Deng, G.ย Li, J.ย Zhu, and L.ย Shi, โSpatio-temporal backpropagation for training high-performance spiking neural networks,โ Frontiers in neuroscience, vol.ย 12, p. 331, 2018.
- W.ย Tan, D.ย Patel, and R.ย Kozma, โStrategy and benchmark for converting deep q-networks to event-driven spiking neural networks,โ in Proceedings of the AAAI conference on artificial intelligence, vol.ย 35, no.ย 11, 2021, pp. 9816โ9824.
- W.ย Fang, Y.ย Chen, J.ย Ding, D.ย Chen, Z.ย Yu, H.ย Zhou, Y.ย Tian, and other contributors, โSpikingjelly,โ https://github.com/fangwei123456/spikingjelly, 2020.
- C.ย Wang, Y.ย Jiang, X.ย Liu, X.ย Lin, X.ย Zou, Z.ย Ji, and S.ย Wu, โA just-in-time compilation approach for neural dynamics simulation,โ in Neural Information Processing, T.ย Mantoro, M.ย Lee, M.ย A. Ayu, K.ย W. Wong, and A.ย N. Hidayanto, Eds.ย ย ย Cham: Springer International Publishing, 2021, pp. 15โ26.
- C.ย Eliasmith, T.ย C. Stewart, X.ย Choo, T.ย Bekolay, T.ย DeWolf, Y.ย Tang, and D.ย Rasmussen, โA large-scale model of the functioning brain,โ science, vol. 338, no. 6111, pp. 1202โ1205, 2012.
- T.ย Bekolay, J.ย Bergstra, E.ย Hunsberger, T.ย DeWolf, T.ย C. Stewart, D.ย Rasmussen, X.ย Choo, A.ย R. Voelker, and C.ย Eliasmith, โNengo: a python tool for building large-scale functional brain models,โ Frontiers in neuroinformatics, vol.ย 7, p.ย 48, 2014.
- Y.ย Zeng, C.ย Liu, and T.ย Tan, โRetrospect and outlook of brain-inspired intelligence research (in chinese),โ The Chinese Journal of Computers, vol.ย 39, no.ย 1, pp. 212โ222, 2016.
- G.-q. Bi and M.-m. Poo, โSynaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type,โ Journal of neuroscience, vol.ย 18, no.ย 24, pp. 10โ464โ10โ472, 1998.
- Y.ย Wu, L.ย Deng, G.ย Li, J.ย Zhu, and L.ย Shi, โSpatio-Temporal Backpropagation for Training High-Performance Spiking Neural Networks,โ Front. Neurosci., vol.ย 12, p. 331, May 2018.
- H.ย Zheng, Y.ย Wu, L.ย Deng, Y.ย Hu, and G.ย Li, โGoing Deeper With Directly-Trained Larger Spiking Neural Networks,โ Proceedings of the AAAI Conference on Artificial Intelligence, vol.ย 35, no.ย 12, pp. 11โ062โ11โ070, May 2021.
- W.ย Fang, Z.ย Yu, Y.ย Chen, T.ย Masquelier, T.ย Huang, and Y.ย Tian, โIncorporating Learnable Membrane Time Constant to Enhance Learning of Spiking Neural Networks,โ in 2021 IEEE/CVF International Conference on Computer Vision (ICCV).ย ย ย Montreal, QC, Canada: IEEE, Oct. 2021, pp. 2641โ2651.
- Y.ย Li, S.ย Deng, X.ย Dong, R.ย Gong, and S.ย Gu, โA free lunch from ann: Towards efficient, accurate spiking neural networks calibration,โ arXiv preprint arXiv:2106.06984, 2021.
- B.ย Han and K.ย Roy, โDeep spiking neural network: Energy efficiency through time based coding,โ in Computer VisionโECCV 2020: 16th European Conference, Glasgow, UK, August 23โ28, 2020, Proceedings, Part X 16.ย ย ย Springer, 2020, pp. 388โ404.
- B.ย Han, G.ย Srinivasan, and K.ย Roy, โRmp-snn: Residual membrane potential neuron for enabling deeper high-accuracy and low-latency spiking neural network,โ in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 13โ558โ13โ567.
- Y.ย Wang and Y.ย Zeng, โMultisensory concept learning framework based on spiking neural networks,โ Frontiers in Systems Neuroscience, vol.ย 16, 2022. [Online]. Available: https://www.frontiersin.org/article/10.3389/fnsys.2022.845177
- Y.ย Sun, Y.ย Zeng, and T.ย Zhang, โQuantum superposition inspired spiking neural network,โ iScience, vol.ย 24, no.ย 8, p. 102880, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2589004221008488
- F.ย Zhao, Y.ย Zeng, G.ย Wang, J.ย Bai, and B.ย Xu, โA brain-inspired decision making model based on top-down biasing of prefrontal cortex to basal ganglia and its application in autonomous uav explorations,โ Cognitive Computation, vol.ย 10, no.ย 2, pp. 296โ306, 2018.
- Y.ย Sun, Y.ย Zeng, and Y.ย Li, โSolving the spike feature information vanishing problem in spiking deep q network with potential based normalization,โ arXiv preprint arXiv:2206.03654, 2022.
- Q.ย Liang, Y.ย Zeng, and B.ย Xu, โTemporal-sequential learning with a brain-inspired spiking neural network and its application to musical memory,โ Frontiers in Computational Neuroscience, vol.ย 14, p.ย 51, 07 2020.
- Q.ย Liang and Y.ย Zeng, โStylistic composition of melodies based on a brain-inspired spiking neural network,โ Frontiers in systems neuroscience, vol.ย 15, p.ย 21, 2021.
- H.ย Fang, Y.ย Zeng, and F.ย Zhao, โBrain inspired sequences production by spiking neural networks with reward-modulated stdp,โ Frontiers in Computational Neuroscience, vol.ย 15, p.ย 8, 2021.
- H.ย Fang, Y.ย Zeng, J.ย Tang, Y.ย Wang, Y.ย Liang, and X.ย Liu, โBrain-inspired graph spiking neural networks for commonsense knowledge representation and reasoning,โ arXiv preprint arXiv:2207.05561, 2022.
- H.ย Fang and Y.ย Zeng, โA brain-inspired causal reasoning model based on spiking neural networks,โ in 2021 International Joint Conference on Neural Networks (IJCNN).ย ย ย IEEE, 2021, pp. 1โ5.
- Y.ย Zeng, Y.ย Zhao, J.ย Bai, and B.ย Xu, โToward robot self-consciousness (ii): brain-inspired robot bodily self model for self-recognition,โ Cognitive Computation, vol.ย 10, no.ย 2, pp. 307โ320, 2018.
- Z.ย Zhao, E.ย Lu, F.ย Zhao, Y.ย Zeng, and Y.ย Zhao, โA brain-inspired theory of mind spiking neural network for reducing safety risks of other agents,โ Frontiers in neuroscience, p. 446, 2022.
- F.ย Zhao, Y.ย Zeng, A.ย Guo, H.ย Su, and B.ย Xu, โA neural algorithm for drosophila linear and nonlinear decision-making,โ Scientific Reports, vol.ย 10, no.ย 1, pp. 1โ16, 2020.
- Q.ย Zhang, Y.ย Zeng, T.ย Zhang, and T.ย Yang, โComparison between human and rodent neurons for persistent activity performance: A biologically plausible computational investigation,โ Frontiers in systems neuroscience, p.ย 98, 2021.
- L.ย F. Abbott, โLapicqueโs introduction of the integrate-and-fire model neuron (1907),โ Brain research bulletin, vol.ย 50, no. 5-6, pp. 303โ304, 1999.
- Fourcaud-Trocmรฉ, Nicolas, Hansel, David, V.ย Vreeswijk, Carl, and Brunel, โHow spike generation mechanisms determine the neuronal response to fluctuating inputs.โ Journal of Neuroscience, 2003.
- R.ย Brette and W.ย Gerstner, โAdaptive exponential integrate-and-fire model as an effective description of neuronal activity,โ Journal of neurophysiology, vol.ย 94, no.ย 5, pp. 3637โ3642, 2005.
- E.ย M. Izhikevich, โSimple model of spiking neurons,โ IEEE Transactions on neural networks, vol.ย 14, no.ย 6, pp. 1569โ1572, 2003.
- A.ย L. Hodgkin and A.ย F. Huxley, โA quantitative description of membrane current and its application to conduction and excitation in nerve,โ The Journal of physiology, vol. 117, no.ย 4, p. 500, 1952.
- G.ย Wang, Y.ย Zeng, and B.ย Xu, โA spiking neural network based autonomous reinforcement learning model and its application in decision making,โ in International Conference on Brain Inspired Cognitive Systems.ย ย ย Springer, 2016, pp. 125โ137.
- D.ย J. Amit, N.ย Brunel, and M.ย Tsodyks, โCorrelations of cortical hebbian reverberations: theory versus experiment,โ Journal of Neuroscience, vol.ย 14, no.ย 11, pp. 6435โ6445, 1994.
- E.ย L. Bienenstock, L.ย N. Cooper, and P.ย W. Munro, โTheory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex,โ Journal of Neuroscience, vol.ย 2, no.ย 1, pp. 32โ48, 1982.
- W.ย Maass and H.ย Markram, โSynapses as dynamic memory buffers,โ Neural Networks, vol.ย 15, no.ย 2, pp. 155โ161, 2002.
- E.ย M. Izhikevich, โSolving the distal reward problem through linkage of stdp and dopamine signaling,โ Cerebral Cortex, vol.ย 17, pp. 2443โ2452, 2007.
- E.ย D. Adrian and Y.ย Zotterman, โThe impulses produced by sensory nerve endings: Part 3. impulses set up by touch and pressure,โ The Journal of physiology, vol.ย 61, no.ย 4, p. 465, 1926.
- J.ย Kim, H.ย Kim, S.ย Huh, J.ย Lee, and K.ย Choi, โDeep neural networks with weighted spikes,โ Neurocomputing, vol. 311, pp. 373โ386, 2018.
- S.ย Thorpe, D.ย Fize, and C.ย Marlot, โSpeed of processing in the human visual system,โ nature, vol. 381, no. 6582, pp. 520โ522, 1996.
- B.ย Rueckauer and S.-C. Liu, โConversion of analog to spiking neural networks using sparse temporal coding,โ in 2018 IEEE international symposium on circuits and systems (ISCAS).ย ย ย IEEE, 2018, pp. 1โ5.
- S.ย M. Bohte, J.ย N. Kok, and H.ย Laย Poutre, โError-backpropagation in temporally encoded networks of spiking neurons,โ Neurocomputing, vol.ย 48, no. 1-4, pp. 17โ37, 2002.
- R.ย Quianย Quiroga and S.ย Panzeri, โExtracting information from neuronal populations: information theory and decoding approaches,โ Nature Reviews Neuroscience, vol.ย 10, no.ย 3, pp. 173โ185, 2009.
- D.ย Li, J.ย Wu, and D.ย Peng, โOnline traffic accident spatial-temporal post-impact prediction model on highways based on spiking neural networks,โ Journal of advanced transportation, vol. 2021, 2021.
- V.ย S. Chakravarthy, D.ย Joseph, and R.ย S. Bapi, โWhat do the basal ganglia do? a modeling perspective,โ Biological cybernetics, vol. 103, no.ย 3, pp. 237โ253, 2010.
- P.ย Redgrave, T.ย J. Prescott, and K.ย Gurney, โThe basal ganglia: a vertebrate solution to the selection problem?โ Neuroscience, vol.ย 89, no.ย 4, pp. 1009โ1023, 1999.
- A.ย Parent and L.-N. Hazrati, โFunctional anatomy of the basal ganglia. i. the cortico-basal ganglia-thalamo-cortical loop,โ Brain research reviews, vol.ย 20, no.ย 1, pp. 91โ127, 1995.
- J.ย L. Lanciego, N.ย Luquin, and J.ย A. Obeso, โFunctional neuroanatomy of the basal ganglia,โ Cold Spring Harbor perspectives in medicine, vol.ย 2, no.ย 12, p. a009621, 2012.
- A.ย Bechara, H.ย Damasio, D.ย Tranel, and S.ย W. Anderson, โDissociation of working memory from decision making within the human prefrontal cortex,โ Journal of neuroscience, vol.ย 18, no.ย 1, pp. 428โ437, 1998.
- S.ย G. Rao, G.ย V. Williams, and P.ย S. Goldman-Rakic, โIsodirectional tuning of adjacent interneurons and pyramidal cells during working memory: evidence for microcolumnar organization in pfc,โ Journal of neurophysiology, vol.ย 81, no.ย 4, pp. 1903โ1916, 1999.
- M.ย DโEsposito, B.ย R. Postle, and B.ย Rypma, โPrefrontal cortical contributions to working memory: evidence from event-related fmri studies,โ Executive control and the frontal lobe: Current issues, pp. 3โ11, 2000.
- A.ย H. Lara and J.ย D. Wallis, โThe role of prefrontal cortex in working memory: a mini review,โ Frontiers in systems neuroscience, vol.ย 9, p. 173, 2015.
- J.ย N. Wood and J.ย Grafman, โHuman prefrontal cortex: processing and representational perspectives,โ Nature reviews neuroscience, vol.ย 4, no.ย 2, pp. 139โ147, 2003.
- K.ย L. Macuga and S.ย H. Frey, โSelective responses in right inferior frontal and supramarginal gyri differentiate between observed movements of oneself vs. another,โ Neuropsychologia, vol.ย 49, no.ย 5, pp. 1202โ1207, 2011.
- B.ย Milner, L.ย R.ย Squire, and E.ย R.ย Kandel, โCognitive neuroscience and the study of memory,โ Neuron, vol.ย 20, p. 445โ468, 1998.
- M.ย L. Smith and B.ย Milner, โThe role of the right hippocampus in the recall of spatial location,โ Neuropsychologia, vol.ย 19, no.ย 6, pp. 781โ793, 1981.
- Y.ย Dan and M.-m. Poo, โSpike timing-dependent plasticity of neural circuits,โ Neuron, vol.ย 44, no.ย 1, pp. 23โ30, 2004.
- A.ย D. Craig, โHow do you feelโnow? the anterior insula and human awareness,โ Nature reviews neuroscience, vol.ย 10, no.ย 1, pp. 59โ70, 2009.
- E.ย M. Izhikevich and G.ย M. Edelman, โLarge-scale model of mammalian thalamocortical systems,โ Proceedings of the National Academy of Sciences, vol. 105, no.ย 9, pp. 3593โ3598, 2008. [Online]. Available: https://www.pnas.org/doi/abs/10.1073/pnas.0712231105
- A.ย Ishai, L.ย G. Ungerleider, A.ย Martin, J.ย L. Schouten, and J.ย V. Haxby, โDistributed representation of objects in the human ventral visual pathway,โ Proceedings of the National Academy of Sciences, vol.ย 96, no.ย 16, pp. 9379โ9384, 1999.
- E.ย Kobatake and K.ย Tanaka, โNeuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex,โ Journal of neurophysiology, vol.ย 71, no.ย 3, pp. 856โ867, 1994.
- D.ย H. Hubel and T.ย N. Wiesel, โReceptive fields, binocular interaction and functional architecture in the catโs visual cortex,โ The Journal of physiology, vol. 160, no.ย 1, p. 106, 1962.
- G.ย Geldberg, โSupplementary motor area structure and function: review and hypothesis,โ Behav Brain Sci., vol.ย 8, pp. 567โ615, 1985.
- H.ย Mushiake, M.ย Inase, and J.ย Tanji, โNeuronal activity in the primate premotor, supplementary, and precentral motor cortex during visually guided and internally determined sequential movements,โ Journal of neurophysiology, vol.ย 66, no.ย 3, pp. 705โ718, 1991.
- C.ย Gerloff, B.ย Corwell, R.ย Chen, M.ย Hallett, and L.ย G. Cohen, โStimulation over the human supplementary motor area interferes with the organization of future elements in complex motor sequences.โ Brain: a journal of neurology, vol. 120, no.ย 9, pp. 1587โ1602, 1997.
- A.ย P. Georgopoulos, โMotor cortex and cognitive processing.โ 1995.
- S.ย Kakei, D.ย S. Hoffman, and P.ย L. Strick, โMuscle and movement representations in the primary motor cortex,โ Science, vol. 285, no. 5436, pp. 2136โ2139, 1999.
- P.ย L. Strick, R.ย P. Dum, J.ย A. Fiez etย al., โCerebellum and nonmotor function,โ Annual review of neuroscience, vol.ย 32, no.ย 1, pp. 413โ434, 2009.
- R.ย S. Zucker and W.ย G. Regehr, โShort-term synaptic plasticity,โ Annual review of physiology, vol.ย 64, no.ย 1, pp. 355โ405, 2002.
- A.ย Tavanaei and A.ย S. Maida, โBio-inspired spiking convolutional neural network using layer-wise sparse coding and stdp learning,โ arXiv preprint arXiv:1611.03000, 2016.
- โโ, โMulti-layer unsupervised learning in a spiking convolutional neural network,โ in 2017 International Joint Conference on Neural Networks (IJCNN).ย ย ย IEEE, 2017, pp. 2023โ2030.
- P.ย Falez, P.ย Tirilly, I.ย M. Bilasco, P.ย Devienne, and P.ย Boulet, โMulti-layered spiking neural network with target timestamp threshold adaptation and stdp,โ arXiv preprint arXiv:1904.01908, 2019.
- T.ย Zhang, Y.ย Zeng, D.ย Zhao, and M.ย Shi, โA plasticity-centric approach to train the non-differential spiking neural networks,โ in Thirty-Second AAAI Conference on Artificial Intelligence, 2018.
- T.ย Zhang, Y.ย Zeng, D.ย Zhao, and B.ย Xu, โBrain-inspired balanced tuning for spiking neural networks.โ in IJCAI, 2018, pp. 1653โ1659.
- D.ย J. Felleman and D.ย E. Van, โDistributed hierarchical processing in the primate cerebral cortex.โ Cerebral cortex (New York, NY: 1991), vol.ย 1, no.ย 1, pp. 1โ47, 1991.
- O.ย Sporns and J.ย D. Zwi, โThe small world of the cerebral cortex,โ Neuroinformatics, vol.ย 2, no.ย 2, pp. 145โ162, 2004.
- D.ย Zhao, Y.ย Zeng, T.ย Zhang, M.ย Shi, and F.ย Zhao, โGlsnn: A multi-layer spiking neural network based on global feedback alignment and local stdp plasticity,โ Frontiers in Computational Neuroscience, vol.ย 14, 2020.
- Y.ย Bengio, N.ย Lรฉonard, and A.ย Courville, โEstimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation,โ Aug. 2013.
- S.ย M. Bohte, โError-backpropagation in networks of fractionally predictive spiking neurons,โ in International Conference on Artificial Neural Networks.ย ย ย Springer, 2011, pp. 60โ68.
- G.ย Shen, D.ย Zhao, and Y.ย Zeng, โBackpropagation with biologically plausible spatiotemporal adjustment for training deep spiking neural networks,โ Patterns, p. 100522, 2022.
- Y.ย Dong, D.ย Zhao, Y.ย Li, and Y.ย Zeng, โAn unsupervised spiking neural network inspired by biologically plausible learning rules and connections,โ 2022. [Online]. Available: https://arxiv.org/abs/2207.02727
- Y.ย Zeng, T.ย Zhang, and B.ย Xu, โImproving multi-layer spiking neural networks by incorporating brain-inspired rules,โ Science China Information Sciences, vol.ย 60, no.ย 5, pp. 1โ11, 2017.
- Y.ย Li and Y.ย Zeng, โEfficient and accurate conversion of spiking neural network with burst spikes,โ arXiv preprint arXiv:2204.13271, 2022.
- Y.ย Li, X.ย He, Y.ย Dong, Q.ย Kong, and Y.ย Zeng, โSpike calibration: Fast and accurate conversion of spiking neural network for object detection and segmentation,โ arXiv preprint arXiv:2207.02702, 2022.
- C.ย Blakemore, R.ย H. Carpenter, and M.ย A. Georgeson, โLateral inhibition between orientation detectors in the human visual system,โ Nature, vol. 228, no. 5266, pp. 37โ39, 1970.
- D.ย Lynott and L.ย Connell, โModality exclusivity norms for 423 object properties,โ Behavior Research Methods, vol.ย 41, no.ย 2, pp. 558โ564, 2009.
- โโ, โModality exclusivity norms for 400 nouns: The relationship between perceptual experience and surface word form,โ Behavior research methods, vol.ย 45, no.ย 2, pp. 516โ526, 2013.
- J.ย R. Binder, L.ย L. Conant, C.ย J. Humphries, L.ย Fernandino, S.ย B. Simons, M.ย Aguilar, and R.ย H. Desai, โToward a brain-based componential semantic representation,โ Cognitive neuropsychology, vol.ย 33, no. 3-4, pp. 130โ174, 2016.
- D.ย Lynott, L.ย Connell, M.ย Brysbaert, J.ย Brand, and J.ย Carney, โThe lancaster sensorimotor norms: multidimensional measures of perceptual and action strength for 40,000 english words,โ Behavior Research Methods, pp. 1โ21, 2019.
- E.ย Agirre, E.ย Alfonseca, K.ย Hall, J.ย Kravalova, M.ย Pasca, and A.ย Soroa, โA study on similarity and relatedness using distributional and wordnet-based approaches,โ 2009.
- E.ย H. Huang, R.ย Socher, C.ย D. Manning, and A.ย Y. Ng, โImproving word representations via global context and multiple word prototypes,โ in Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2012, pp. 873โ882.
- K.ย McRae, G.ย S. Cree, M.ย S. Seidenberg, and C.ย McNorgan, โSemantic feature production norms for a large set of living and nonliving things,โ Behavior research methods, vol.ย 37, no.ย 4, pp. 547โ559, 2005.
- B.ย J. Devereux, L.ย K. Tyler, J.ย Geertzen, and B.ย Randall, โThe centre for speech, language and the brain (cslb) concept property norms,โ Behavior research methods, vol.ย 46, no.ย 4, pp. 1119โ1127, 2014.
- M.ย J. Frank and E.ย D. Claus, โAnatomy of a decision: striato-orbitofrontal interactions in reinforcement learning, decision making, and reversal.โ Psychological review, vol. 113, no.ย 2, p. 300, 2006.
- I.ย Silkis, โThe cortico-basal ganglia-thalamocortical circuit with synaptic plasticity. i. modification rules for excitatory and inhibitory synapses in the striatum,โ Biosystems, vol.ย 57, no.ย 3, pp. 187โ196, 2000.
- X.ย Wang, Z.-G. Hou, F.ย Lv, M.ย Tan, and Y.ย Wang, โMobile robotsโ modular navigation controller using spiking neural networks,โ Neurocomputing, vol. 134, pp. 230โ238, 2014.
- J.ย C.ย V. Tieck, L.ย Steffen, J.ย Kaiser, A.ย Roennau, and R.ย Dillmann, โControlling a robot arm for target reaching without planning using spiking neurons,โ in 2018 IEEE 17th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC), 2018, pp. 111โ116.
- G.ย Tang, N.ย Kumar, R.ย Yoo, and K.ย Michmizos, โDeep reinforcement learning with population-coded spiking neural network for continuous control,โ in Conference on Robot Learning.ย ย ย PMLR, 2021, pp. 2016โ2029.
- G.ย Huang, Z.ย Liu, L.ย Van Derย Maaten, and K.ย Q. Weinberger, โDensely connected convolutional networks,โ in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 4700โ4708.
- H.ย Merchant, D.ย L. Harrington, and W.ย H. Meck, โNeural basis of the perception and estimation of time,โ Annual Review of Neuroscience, vol.ย 36, no.ย 1, pp. 313โ336, 2013.
- N.ย J. Fortin, K.ย L. Agster, and H.ย B. Eichenbaum, โCritical role of the hippocampus in memory for sequences of events,โ Nature Neuroscience, vol.ย 5, no.ย 5, pp. 458โ462, 2002.
- B.ย Krueger, โClassical piano midi page,โ 2018. [Online]. Available: http://piano-midi.de/
- A.ย Dietrich, โThe cognitive neuroscience of creativity,โ Psychonomic bulletin & review, vol.ย 11, no.ย 6, pp. 1011โ1026, 2004.
- R.ย Jung, B.ย Mead, J.ย Carrasco, and R.ย Barrow, โThe structure of creative cognition in the human brain,โ Frontiers in Human Neuroence, vol.ย 7, p. 330, 2013.
- Y.ย Xie, P.ย Hu, J.ย Li, J.ย Chen, W.ย Song, X.-J. Wang, T.ย Yang, S.ย Dehaene, S.ย Tang, B.ย Min etย al., โGeometry of sequence working memory in macaque prefrontal cortex,โ Science, vol. 375, no. 6581, pp. 632โ639, 2022.
- N.ย Frรฉmaux and W.ย Gerstner, โNeuromodulated spike-timing-dependent plasticity, and theory of three-factor learning rules,โ Frontiers in Neural Circuits, vol.ย 9, p.ย 85, 2016.
- V.ย C. Pammi, K.ย P. Miyapuram, R.ย S. Bapi, and K.ย Doya, โChunking phenomenon in complex sequential skill learning in humans,โ in International Conference on Neural Information Processing.ย ย ย Springer, 2004, pp. 294โ299.
- X.ย Jiang, T.ย Long, W.ย Cao, J.ย Li, S.ย Dehaene, and L.ย Wang, โProduction of supra-regular spatial sequences by macaque monkeys,โ Current Biology, vol.ย 28, no.ย 12, pp. 1851โ1859, 2018.
- M.ย L. Schlichting and A.ย R. Preston, โThe hippocampus and memory integration: building knowledge to navigate future decisions,โ in The hippocampus from cells to systems.ย ย ย Springer, 2017, pp. 405โ437.
- S.ย Ramirez, X.ย Liu, P.-A. Lin, J.ย Suh, M.ย Pignatelli, R.ย L. Redondo, T.ย J. Ryan, and S.ย Tonegawa, โCreating a false memory in the hippocampus,โ Science, vol. 341, no. 6144, pp. 387โ391, 2013.
- J.ย C. Robynย Speer and C.ย Havasi, โConceptnet 5.5: An open multilingual graph of general knowledge,โ vol. abs/1612.03975, 2017. [Online]. Available: http://arxiv.org/abs/1612.03975
- M.ย Sugiura, C.ย M. Miyauchi, Y.ย Kotozaki, Y.ย Akimoto, T.ย Nozawa, Y.ย Yomogida, S.ย Hanawa, Y.ย Yamamoto, A.ย Sakuma, S.ย Nakagawa etย al., โNeural mechanism for mirrored self-face recognition,โ Cerebral Cortex, vol.ย 25, no.ย 9, pp. 2806โ2814, 2015.
- S.ย G. Shamay-Tsoory, S.ย Shur, L.ย Barcai-Goodman, S.ย Medlovich, H.ย Harari, and Y.ย Levkovitz, โDissociation of cognitive from affective components of theory of mind in schizophrenia,โ Psychiatry Research, vol. 149, no. 1-3, pp. 11โ23, Jan. 2007. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0165178106001934
- C.ย L. Sebastian, N.ย M.ย G. Fontaine, G.ย Bird, S.-J. Blakemore, S.ย A. Deย Brito, E.ย J.ย P. McCrory, and E.ย Viding, โNeural processing associated with cognitive and affective Theory of mind in adolescents and adults,โ Social Cognitive and Affective Neuroscience, vol.ย 7, no.ย 1, pp. 53โ63, Jan. 2012. [Online]. Available: https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsr023
- M.ย Dennis, N.ย Simic, E.ย D. Bigler, T.ย Abildskov, A.ย Agostino, H.ย G. Taylor, K.ย Rubin, K.ย Vannatta, C.ย A. Gerhardt, T.ย Stancin etย al., โCognitive, affective, and conative theory of mind (ToM) in children with traumatic brain injury,โ Developmental cognitive neuroscience, vol.ย 5, pp. 25โ39, 2013.
- A.ย Abu-Akel and S.ย Shamay-Tsoory, โNeuroanatomical and neurochemical bases of theory of mind,โ Neuropsychologia, vol.ย 49, no.ย 11, pp. 2971โ2984, Sep. 2011. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0028393211003368
- C.ย E. Hartwright, I.ย A. Apperly, and P.ย C. Hansen, โMultiple roles for executive control in beliefโdesire reasoning: Distinct neural networks are recruited for self perspective inhibition and complexity of reasoning,โ NeuroImage, vol.ย 61, no.ย 4, pp. 921โ930, jul 2012. [Online]. Available: https://doi.org/10.1016%2Fj.neuroimage.2012.03.012
- โโ, โThe special case of self-perspective inhibition in mental, but not non-mental, representation,โ Neuropsychologia, vol.ย 67, pp. 183โ192, jan 2015. [Online]. Available: https://doi.org/10.1016%2Fj.neuropsychologia.2014.12.015
- J.ย Koster-Hale and R.ย Saxe, โTheory of mind: a neural prediction problem,โ Neuron, vol.ย 79, no.ย 5, pp. 836โ848, Sep. 2013. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S089662731300754X
- S.ย Suzuki, N.ย Harasawa, K.ย Ueno, J.ย L. Gardner, N.ย Ichinohe, M.ย Haruno, K.ย Cheng, and H.ย Nakahara, โLearning to simulate othersโ decisions,โ Neuron, vol.ย 74, no.ย 6, pp. 1125โ1137, 2012.
- G.ย G. Gallup, โChimpanzees: self-recognition,โ Science, vol. 167, no. 3914, pp. 86โ87, 1970.
- S.ย D. Suรกrez and G.ย G. Gallupย Jr, โSelf-recognition in chimpanzees and orangutans, but not gorillas,โ Journal of human evolution, vol.ย 10, no.ย 2, pp. 175โ188, 1981.
- V.ย Walraven, L.ย Vanย Elsacker, and R.ย Verheyen, โReactions of a group of pygmy chimpanzees (pan paniscus) to their mirror-images: Evidence of self-recognition,โ Primates, vol.ย 36, no.ย 1, pp. 145โ150, 1995.
- F.ย G. Patterson and R.ย H. Cohn, โSelf-recognition and self-awareness in lowland gorillas,โ 1994.
- S.ย Posada and M.ย Colell, โAnother gorilla (gorilla gorilla gorilla) recognizes himself in a mirror,โ American Journal of Primatology: Official Journal of the American Society of Primatologists, vol.ย 69, no.ย 5, pp. 576โ583, 2007.
- J.ย M. Plotnik, F.ย B. Deย Waal, and D.ย Reiss, โSelf-recognition in an asian elephant,โ Proceedings of the National Academy of Sciences, vol. 103, no.ย 45, pp. 17โ053โ17โ057, 2006.
- K.ย Marten and S.ย Psarakos, โEvidence of self-awareness in the bottlenose dolphin (tursiops truncatus),โ 1994.
- F.ย Delfour and K.ย Marten, โMirror image processing in three marine mammal species: killer whales (orcinus orca), false killer whales (pseudorca crassidens) and california sea lions (zalophus californianus),โ Behavioural processes, vol.ย 53, no.ย 3, pp. 181โ190, 2001.
- L.ย Chang, Q.ย Fang, S.ย Zhang, M.-m. Poo, and N.ย Gong, โMirror-induced self-directed behaviors in rhesus monkeys after visual-somatosensory training,โ Current Biology, vol.ย 25, no.ย 2, pp. 212โ217, 2015.
- S.ย Tang and A.ย Guo, โChoice behavior of drosophila facing contradictory visual cues,โ Science, vol. 294, no. 5546, pp. 1543โ1547, 2001.
- K.ย Zhang, J.ย Z. Guo, Y.ย Peng, W.ย Xi, and A.ย Guo, โDopamine-mushroom body circuit regulates saliency-based decision-making in drosophila,โ science, vol. 316, no. 5833, pp. 1901โ1904, 2007.
- M.ย Zhou, N.ย Chen, J.ย Tian, J.ย Zeng, Y.ย Zhang, X.ย Zhang, J.ย Guo, J.ย Sun, Y.ย Li, A.ย Guo etย al., โSuppression of gabaergic neurons through d2-like receptor secures efficient conditioning in drosophila aversive olfactory learning,โ Proceedings of the National Academy of Sciences, vol. 116, no.ย 11, pp. 5118โ5125, 2019.
- E.ย K. Miller, โThe prefontral cortex and cognitive control,โ Nature reviews neuroscience, vol.ย 1, no.ย 1, pp. 59โ65, 2000.
- A.ย Nieder and E.ย K. Miller, โCoding of cognitive magnitude: Compressed scaling of numerical information in the primate prefrontal cortex,โ Neuron, vol.ย 37, no.ย 1, pp. 149โ157, 2003.
- S.ย Bishop, J.ย Duncan, M.ย Brett, and A.ย D. Lawrence, โPrefrontal cortical function and anxiety: controlling attention to threat-related stimuli,โ Nature neuroscience, vol.ย 7, no.ย 2, pp. 184โ188, 2004.
- E.ย Koechlin, C.ย Ody, and F.ย Kouneiher, โThe architecture of cognitive control in the human prefrontal cortex,โ Science, vol. 302, no. 5648, pp. 1181โ1185, 2003.
- J.ย Hass, L.ย Hertรคg, and D.ย Durstewitz, โA detailed data-driven network model of prefrontal cortex reproduces key features of in vivo activity,โ PLoS computational biology, vol.ย 12, no.ย 5, p. e1004930, 2016.
- A.ย Shapson-Coe, M.ย Januszewski, D.ย R. Berger, A.ย Pope, Y.ย Wu, T.ย Blakely, R.ย L. Schalek, P.ย H. Li, S.ย Wang, J.ย Maitin-Shepard etย al., โA connectomic study of a petascale fragment of human cerebral cortex,โ BioRxiv, 2021.
- C.ย Beaulieu, โNumerical data on neocortical neurons in adult rat, with special reference to the gaba population,โ Brain research, vol. 609, no. 1-2, pp. 284โ292, 1993.
- J.ย DeFelipe, โThe evolution of the brain, the human nature of cortical circuits, and intellectual creativity,โ Frontiers in neuroanatomy, vol.ย 5, p.ย 29, 2011.
- J.ย R. Gibson, M.ย Beierlein, and B.ย W. Connors, โTwo networks of electrically coupled inhibitory neurons in neocortex,โ Nature, vol. 402, no. 6757, pp. 75โ79, 1999.
- W.-J. Gao, Y.ย Wang, and P.ย S. Goldman-Rakic, โDopamine modulation of perisomatic and peridendritic inhibition in prefrontal cortex,โ Journal of Neuroscience, vol.ย 23, no.ย 5, pp. 1622โ1630, 2003.
- G.ย Eyal, M.ย B. Verhoog, G.ย Testa-Silva, Y.ย Deitcher, J.ย C. Lodder, R.ย Benavides-Piccione, J.ย Morales, J.ย DeFelipe, C.ย P. deย Kock, H.ย D. Mansvelder etย al., โUnique membrane properties and enhanced signal processing in human neocortical neurons,โ Elife, vol.ย 5, p. e16553, 2016.
- Q.ย Zhang, Y.ย Zeng, and T.ย Yang, โComputational investigation of contributions from different subtypes of interneurons in prefrontal cortex for information maintenance,โ Scientific Reports, vol.ย 10, no.ย 1, p. 4671, 2020.
- Binzegger, Tom, Douglas, Rodney, J., Martin, Kevan, A., and C., โA quantitative map of the circuit of cat primary visual cortex.โ Journal of Neuroscience, vol.ย 24, no.ย 39, pp. 8441โ8453, 2004.
- M.ย J. Richardson, N.ย Brunel, and V.ย Hakim, โFrom subthreshold to firing-rate resonance,โ Journal of neurophysiology, vol.ย 89, no.ย 5, pp. 2538โ2554, 2003.
- X.ย Jiang, S.ย Shen, C.ย R. Cadwell, P.ย Berens, F.ย Sinz, A.ย S. Ecker, S.ย Patel, and A.ย S. Tolias, โPrinciples of connectivity among morphologically defined cell types in adult neocortex,โ Science, vol. 350, no. 6264, p. aac9462, 2015.
- E.ย M. Izhikevich and G.ย M. Edelman, โLarge-scale model of mammalian thalamocortical systems,โ Proceedings of the national academy of sciences, vol. 105, no.ย 9, pp. 3593โ3598, 2008.
- T.ย Tchumatchenko and C.ย Clopath, โOscillations emerging from noise-driven steady state in networks with electrical synapses and subthreshold resonance,โ Nature communications, vol.ย 5, no.ย 1, pp. 1โ9, 2014.
- S.ย W. Oh, J.ย A. Harris, L.ย Ng, B.ย Winslow, N.ย Cain, S.ย Mihalas, Q.ย Wang, C.ย Lau, L.ย Kuan, A.ย M. Henry etย al., โA mesoscale connectome of the mouse brain,โ Nature, vol. 508, no. 7495, pp. 207โ214, 2014.
- H.ย Markram, M.ย Toledo-Rodriguez, Y.ย Wang, A.ย Gupta, G.ย Silberberg, and C.ย Wu, โInterneurons of the neocortical inhibitory system,โ Nature reviews neuroscience, vol.ย 5, no.ย 10, pp. 793โ807, 2004.
- D.ย S. Modha and R.ย Singh, โNetwork architecture of the long-distance pathways in the macaque brain,โ Proceedings of the National Academy of Sciences, vol. 107, no.ย 30, pp. 13โ485โ13โ490, 2010.
- T.ย Zhang, Y.ย Zeng, and B.ย Xu, โA computational approach towards the microscale mouse brain connectome from the mesoscale,โ Journal of integrative neuroscience, vol.ย 16, no.ย 3, p. 291โ306, 2017.
- R.ย Bakker, T.ย Wachtler, and M.ย Diesmann, โCocomac 2.0 and the future of tract-tracing databases,โ Frontiers in neuroinformatics, vol.ย 6, pp. 30โ30, Dec 2012.
- R.ย Chaudhuri, K.ย Knoblauch, M.ย A. Gariel, H.ย Kennedy, and X.-J. Wang, โA large-scale circuit mechanism for hierarchical dynamical processing in the primate cortex,โ Neuron, vol.ย 88, pp. 419โ431, 2015.
- C.ย E. Collins, D.ย C. Airey, N.ย A. Young, D.ย B. Leitch, and J.ย H. Kaas, โNeuron densities vary across and within cortical areas in primates,โ Proceedings of the National Academy of Sciences, vol. 107, no.ย 36, pp. 15โ927โ15โ932, 2010.
- X.ย Liu, Y.ย Zeng, T.ย Zhang, and B.ย Xu, โParallel brain simulator: A multi-scale and parallel brain-inspired neural network modeling and simulation platform,โ Cognitive Computation, vol.ย 8, no.ย 5, pp. 967โ981, Oct 2016.
- T.ย L. Davis and P.ย Sterling, โMicrocircuitry of cat visual cortex: Classification of neurons in layer iv of area 17, and identification of the patterns of lateral geniculate input,โ Journal of Comparative Neurology, vol. 188, no.ย 4, pp. 599โ627, 1979.
- L.ย Fan, H.ย Li, J.ย Zhuo, Y.ย Zhang, J.ย Wang, L.ย Chen, Z.ย Yang, C.ย Chu, S.ย Xie, A.ย R. Laird, P.ย T. Fox, S.ย B. Eickhoff, C.ย Yu, and T.ย Jiang, โThe human brainnetome atlas: A new brain atlas based on connectional architecture,โ Cerebral cortex (New York, N.Y. : 1991), vol.ย 26, no.ย 8, pp. 3508โ3526, Aug 2016.
- A.ย Klein and J.ย Tourville, โ101 labeled brain images and a consistent human cortical labeling protocol,โ Frontiers in neuroscience, vol.ย 6, pp. 171โ171, Dec 2012.
- B.ย Han, F.ย Zhao, Y.ย Zeng, and G.ย Shen, โDevelopmental plasticity-inspired adaptive pruning for deep spiking and artificial neural networks,โ 2022.
- G.ย Shen, D.ย Zhao, Y.ย Dong, and Y.ย Zeng, โBio-inspired neural architecture search for efficient spiking neural networks,โ 2022.
- K.-C. Peng, T.ย Chen, A.ย Sadovnik, and A.ย C. Gallagher, โA mixed bag of emotions: Model, predict, and transfer emotion distributions,โ in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 860โ868.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.