Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Edit Distance between Merge Trees (2207.08511v1)

Published 18 Jul 2022 in cs.CG

Abstract: Topological structures such as the merge tree provide an abstract and succinct representation of scalar fields. They facilitate effective visualization and interactive exploration of feature-rich data. A merge tree captures the topology of sub-level and super-level sets in a scalar field. Estimating the similarity between merge trees is an important problem with applications to feature-directed visualization of time-varying data. We present an approach based on tree edit distance to compare merge trees. The comparison measure satisfies metric properties, it can be computed efficiently, and the cost model for the edit operations is both intuitive and captures well-known properties of merge trees. Experimental results on time-varying scalar fields, 3D cryo electron microscopy data, shape data, and various synthetic datasets show the utility of the edit distance towards a feature-driven analysis of scalar fields.

Citations (60)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.