Papers
Topics
Authors
Recent
2000 character limit reached

Get rid of your constraints and reparametrize: A study in NNLS and implicit bias (2207.08437v3)

Published 18 Jul 2022 in math.OC, cs.NA, and math.NA

Abstract: Over the past years, there has been significant interest in understanding the implicit bias of gradient descent optimization and its connection to the generalization properties of overparametrized neural networks. Several works observed that when training linear diagonal networks on the square loss for regression tasks (which corresponds to overparametrized linear regression) gradient descent converges to special solutions, e.g., non-negative ones. We connect this observation to Riemannian optimization and view overparametrized GD with identical initialization as a Riemannian GD. We use this fact for solving non-negative least squares (NNLS), an important problem behind many techniques, e.g., non-negative matrix factorization. We show that gradient flow on the reparametrized objective converges globally to NNLS solutions, providing convergence rates also for its discretized counterpart. Unlike previous methods, we do not rely on the calculation of exponential maps or geodesics. We further show accelerated convergence using a second-order ODE, lending itself to accelerated descent methods. Finally, we establish the stability against negative perturbations and discuss generalization to other constrained optimization problems.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.