Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-negative Least Squares via Overparametrization (2207.08437v2)

Published 18 Jul 2022 in math.OC, cs.NA, and math.NA

Abstract: In many applications, solutions of numerical problems are required to be non-negative, e.g., when retrieving pixel intensity values or physical densities of a substance. In this context, non-negative least squares (NNLS) is a ubiquitous tool, e.g., when seeking sparse solutions of high-dimensional statistical problems. Despite vast efforts since the seminal work of Lawson and Hanson in the '70s, the non-negativity assumption is still an obstacle for the theoretical analysis and scalability of many off-the-shelf solvers. In the different context of deep neural networks, we recently started to see that the training of overparametrized models via gradient descent leads to surprising generalization properties and the retrieval of regularized solutions. In this paper, we prove that, by using an overparametrized formulation, NNLS solutions can reliably be approximated via vanilla gradient flow. We furthermore establish stability of the method against negative perturbations of the ground-truth. Our simulations confirm that this allows the use of vanilla gradient descent as a novel and scalable numerical solver for NNLS. From a conceptual point of view, our work proposes a novel approach to trading side-constraints in optimization problems against complexity of the optimization landscape, which does not build upon the concept of Lagrangian multipliers.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Hung-Hsu Chou (9 papers)
  2. Johannes Maly (19 papers)
  3. Claudio Mayrink Verdun (18 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.