Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Towards Programmable Memory Controller for Tensor Decomposition (2207.08298v1)

Published 17 Jul 2022 in cs.DC, cs.AR, and cs.LG

Abstract: Tensor decomposition has become an essential tool in many data science applications. Sparse Matricized Tensor Times Khatri-Rao Product (MTTKRP) is the pivotal kernel in tensor decomposition algorithms that decompose higher-order real-world large tensors into multiple matrices. Accelerating MTTKRP can speed up the tensor decomposition process immensely. Sparse MTTKRP is a challenging kernel to accelerate due to its irregular memory access characteristics. Implementing accelerators on Field Programmable Gate Array (FPGA) for kernels such as MTTKRP is attractive due to the energy efficiency and the inherent parallelism of FPGA. This paper explores the opportunities, key challenges, and an approach for designing a custom memory controller on FPGA for MTTKRP while exploring the parameter space of such a custom memory controller.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.