Papers
Topics
Authors
Recent
2000 character limit reached

RT-KGD: Relation Transition Aware Knowledge-Grounded Dialogue Generation (2207.08212v1)

Published 17 Jul 2022 in cs.CL and cs.AI

Abstract: Grounding dialogue system with external knowledge is a promising way to improve the quality of responses. Most existing works adopt knowledge graphs (KGs) as the external resources, paying attention to the contribution of entities in the last utterance of the dialogue for context understanding and response generation. Nevertheless, the correlations between knowledge implied in the multi-turn context and the transition regularities between relations in KGs are under-explored. To this end, we propose a Relation Transition aware Knowledge-Grounded Dialogue Generation model (RT-KGD). Specifically, inspired by the latent logic of human conversation, our model integrates dialogue-level relation transition regularities with turn-level entity semantic information. In this manner, the interaction between knowledge is considered to produce abundant clues for predicting the appropriate knowledge and generating coherent responses. The experimental results on both automatic evaluation and manual evaluation indicate that our model outperforms state-of-the-art baselines.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.