Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

End-to-End Spoken Language Understanding: Performance analyses of a voice command task in a low resource setting (2207.08179v1)

Published 17 Jul 2022 in cs.CL, cs.SD, and eess.AS

Abstract: Spoken Language Understanding (SLU) is a core task in most human-machine interaction systems. With the emergence of smart homes, smart phones and smart speakers, SLU has become a key technology for the industry. In a classical SLU approach, an Automatic Speech Recognition (ASR) module transcribes the speech signal into a textual representation from which a Natural Language Understanding (NLU) module extracts semantic information. Recently End-to-End SLU (E2E SLU) based on Deep Neural Networks has gained momentum since it benefits from the joint optimization of the ASR and the NLU parts, hence limiting the cascade of error effect of the pipeline architecture. However, little is known about the actual linguistic properties used by E2E models to predict concepts and intents from speech input. In this paper, we present a study identifying the signal features and other linguistic properties used by an E2E model to perform the SLU task. The study is carried out in the application domain of a smart home that has to handle non-English (here French) voice commands. The results show that a good E2E SLU performance does not always require a perfect ASR capability. Furthermore, the results show the superior capabilities of the E2E model in handling background noise and syntactic variation compared to the pipeline model. Finally, a finer-grained analysis suggests that the E2E model uses the pitch information of the input signal to identify voice command concepts. The results and methodology outlined in this paper provide a springboard for further analyses of E2E models in speech processing.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube