Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Accelerating Magnetic Resonance T1\r{ho} Mapping Using Simultaneously Spatial Patch-based and Parametric Group-based Low-rank Tensors (SMART) (2207.08117v5)

Published 17 Jul 2022 in eess.IV

Abstract: Quantitative magnetic resonance (MR) T1\r{ho} mapping is a promising approach for characterizing intrinsic tissue-dependent information. However, long scan time significantly hinders its widespread applications. Recently, low-rank tensor has been employed and demonstrated good performance in accelerating MR T1\r{ho} mapping. In this study, we propose a novel method that uses spatial patch-based and parametric group-based low rank tensors simultaneously (SMART) to reconstruct images from highly undersampled k-space data. The spatial patch-based low-rank tensor exploits the high local and nonlocal redundancies and similarities between the contrast images in T1\r{ho} mapping. The parametric group based low-rank tensor, which integrates similar exponential behavior of the image signals, is jointly used to enforce the multidimensional low-rankness in the reconstruction process. In vivo brain datasets were used to demonstrate the validity of the proposed method. Experimental results have demonstrated that the proposed method achieves 11.7-fold and 13.21-fold accelerations in two-dimensional and three-dimensional acquisitions, respectively, with more accurate reconstructed images and maps than several state-of-the-art methods. Prospective reconstruction results further demonstrate the capability of the SMART method in accelerating MR T1\r{ho} imaging.

Citations (2)

Summary

We haven't generated a summary for this paper yet.