Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Streaming Algorithms with Large Approximation Factors (2207.08075v1)

Published 17 Jul 2022 in cs.DS

Abstract: We initiate a broad study of classical problems in the streaming model with insertions and deletions in the setting where we allow the approximation factor $\alpha$ to be much larger than $1$. Such algorithms can use significantly less memory than the usual setting for which $\alpha = 1+\epsilon$ for an $\epsilon \in (0,1)$. We study large approximations for a number of problems in sketching and streaming and the following are some of our results. For the $\ell_p$ norm/quasinorm $|x|_p$ of an $n$-dimensional vector $x$, $0 < p \le 2$, we show that obtaining a $\poly(n)$-approximation requires the same amount of memory as obtaining an $O(1)$-approximation for any $M = n{\Theta(1)}$. For estimating the $\ell_p$ norm, $p > 2$, we show an upper bound of $O(n{1-2/p} (\log n \allowbreak \log M)/\alpha{2})$ bits for an $\alpha$-approximation, and give a matching lower bound, for almost the full range of $\alpha \geq 1$ for linear sketches. For the $\ell_2$-heavy hitters problem, we show that the known lower bound of $\Omega(k \log n\log M)$ bits for identifying $(1/k)$-heavy hitters holds even if we are allowed to output items that are $1/(\alpha k)$-heavy, for almost the full range of $\alpha$, provided the algorithm succeeds with probability $1-O(1/n)$. We also obtain a lower bound for linear sketches that is tight even for constant probability algorithms. For estimating the number $\ell_0$ of distinct elements, we give an $n{1/t}$-approximation algorithm using $O(t\log \log M)$ bits of space, as well as a lower bound of $\Omega(t)$ bits, both excluding the storage of random bits.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.