Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Progress and limitations of deep networks to recognize objects in unusual poses (2207.08034v1)

Published 16 Jul 2022 in cs.CV

Abstract: Deep networks should be robust to rare events if they are to be successfully deployed in high-stakes real-world applications (e.g., self-driving cars). Here we study the capability of deep networks to recognize objects in unusual poses. We create a synthetic dataset of images of objects in unusual orientations, and evaluate the robustness of a collection of 38 recent and competitive deep networks for image classification. We show that classifying these images is still a challenge for all networks tested, with an average accuracy drop of 29.5% compared to when the objects are presented upright. This brittleness is largely unaffected by various network design choices, such as training losses (e.g., supervised vs. self-supervised), architectures (e.g., convolutional networks vs. transformers), dataset modalities (e.g., images vs. image-text pairs), and data-augmentation schemes. However, networks trained on very large datasets substantially outperform others, with the best network tested$\unicode{x2014}$Noisy Student EfficentNet-L2 trained on JFT-300M$\unicode{x2014}$showing a relatively small accuracy drop of only 14.5% on unusual poses. Nevertheless, a visual inspection of the failures of Noisy Student reveals a remaining gap in robustness with the human visual system. Furthermore, combining multiple object transformations$\unicode{x2014}$3D-rotations and scaling$\unicode{x2014}$further degrades the performance of all networks. Altogether, our results provide another measurement of the robustness of deep networks that is important to consider when using them in the real world. Code and datasets are available at https://github.com/amro-kamal/ObjectPose.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 5 likes.

Upgrade to Pro to view all of the tweets about this paper: