Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Nearly Tight Analysis of Greedy k-means++ (2207.07949v1)

Published 16 Jul 2022 in cs.DS and cs.LG

Abstract: The famous $k$-means++ algorithm of Arthur and Vassilvitskii [SODA 2007] is the most popular way of solving the $k$-means problem in practice. The algorithm is very simple: it samples the first center uniformly at random and each of the following $k-1$ centers is then always sampled proportional to its squared distance to the closest center so far. Afterward, Lloyd's iterative algorithm is run. The $k$-means++ algorithm is known to return a $\Theta(\log k)$ approximate solution in expectation. In their seminal work, Arthur and Vassilvitskii [SODA 2007] asked about the guarantees for its following \emph{greedy} variant: in every step, we sample $\ell$ candidate centers instead of one and then pick the one that minimizes the new cost. This is also how $k$-means++ is implemented in e.g. the popular Scikit-learn library [Pedregosa et al.; JMLR 2011]. We present nearly matching lower and upper bounds for the greedy $k$-means++: We prove that it is an $O(\ell3 \log3 k)$-approximation algorithm. On the other hand, we prove a lower bound of $\Omega(\ell3 \log3 k / \log2(\ell\log k))$. Previously, only an $\Omega(\ell \log k)$ lower bound was known [Bhattacharya, Eube, R\"oglin, Schmidt; ESA 2020] and there was no known upper bound.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.