Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

MAC-DO: An Efficient Output-Stationary GEMM Accelerator for CNNs Using DRAM Technology (2207.07862v3)

Published 16 Jul 2022 in cs.AR, cs.DC, and cs.NE

Abstract: DRAM-based in-situ accelerators have shown their potential in addressing the memory wall challenge of the traditional von Neumann architecture. Such accelerators exploit charge sharing or logic circuits for simple logic operations at the DRAM subarray level. However, their throughput is limited due to low array utilization, as only a few row cells in a DRAM array participate in operations while most rows remain deactivated. Moreover, they require many cycles for more complex operations such as a multi-bit multiply-accumulate (MAC) operation, resulting in significant data access and movement and potentially worsening power efficiency. To overcome these limitations, this paper presents MAC-DO, an efficient and low-power DRAM-based in-situ accelerator. Compared to previous DRAM-based in-situ accelerators, a MAC-DO cell, consisting of two 1T1C DRAM cells (two transistors and two capacitors), innately supports a multi-bit MAC operation within a single cycle, ensuring good linearity and compatibility with existing 1T1C DRAM cells and array structures. This achievement is facilitated by a novel analog computation method utilizing charge steering. Additionally, MAC-DO enables concurrent individual MAC operations in each MAC-DO cell without idle cells, significantly improving throughput and energy efficiency. As a result, a MAC-DO array efficiently can accelerate matrix multiplications based on output stationary mapping, supporting the majority of computations performed in deep neural networks (DNNs). Furthermore, a MAC-DO array efficiently reuses three types of data (input, weight and output), minimizing data movement.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.