Papers
Topics
Authors
Recent
2000 character limit reached

Bootstrap State Representation using Style Transfer for Better Generalization in Deep Reinforcement Learning (2207.07749v1)

Published 15 Jul 2022 in cs.LG and cs.AI

Abstract: Deep Reinforcement Learning (RL) agents often overfit the training environment, leading to poor generalization performance. In this paper, we propose Thinker, a bootstrapping method to remove adversarial effects of confounding features from the observation in an unsupervised way, and thus, it improves RL agents' generalization. Thinker first clusters experience trajectories into several clusters. These trajectories are then bootstrapped by applying a style transfer generator, which translates the trajectories from one cluster's style to another while maintaining the content of the observations. The bootstrapped trajectories are then used for policy learning. Thinker has wide applicability among many RL settings. Experimental results reveal that Thinker leads to better generalization capability in the Procgen benchmark environments compared to base algorithms and several data augmentation techniques.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.