Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Untrained, physics-informed neural networks for structured illumination microscopy (2207.07705v1)

Published 15 Jul 2022 in eess.IV, cs.CV, and physics.optics

Abstract: In recent years there has been great interest in using deep neural networks (DNN) for super-resolution image reconstruction including for structured illumination microscopy (SIM). While these methods have shown very promising results, they all rely on data-driven, supervised training strategies that need a large number of ground truth images, which is experimentally difficult to realize. For SIM imaging, there exists a need for a flexible, general, and open-source reconstruction method that can be readily adapted to different forms of structured illumination. We demonstrate that we can combine a deep neural network with the forward model of the structured illumination process to reconstruct sub-diffraction images without training data. The resulting physics-informed neural network (PINN) can be optimized on a single set of diffraction limited sub-images and thus doesn't require any training set. We show with simulated and experimental data that this PINN can be applied to a wide variety of SIM methods by simply changing the known illumination patterns used in the loss function and can achieve resolution improvements that match well with theoretical expectations.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.