Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Quasi-Monte Carlo and discontinuous Galerkin (2207.07698v6)

Published 15 Jul 2022 in math.NA and cs.NA

Abstract: In this study, we consider the development of tailored quasi-Monte Carlo (QMC) cubatures for non-conforming discontinuous Galerkin (DG) approximations of elliptic partial differential equations (PDEs) with random coefficients. We consider both the affine and uniform and the lognormal models for the input random field, and investigate the use of QMC cubatures to approximate the expected value of the PDE response subject to input uncertainty. In particular, we prove that the resulting QMC convergence rate for DG approximations behaves in the same way as if continuous finite elements were chosen. Notably, the parametric regularity bounds for DG, which are developed in this work, are also useful for other methods such as sparse grids. Numerical results underline our analytical findings.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.