Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Brain MRI study for glioma segmentation using convolutional neural networks and original post-processing techniques with low computational demand (2207.07622v1)

Published 15 Jul 2022 in eess.IV, cs.CV, and physics.med-ph

Abstract: Gliomas are brain tumors composed of different highly heterogeneous histological subregions. Image analysis techniques to identify relevant tumor substructures have high potential for improving patient diagnosis, treatment and prognosis. However, due to the high heterogeneity of gliomas, the segmentation task is currently a major challenge in the field of medical image analysis. In the present work, the database of the Brain Tumor Segmentation (BraTS) Challenge 2018, composed of multimodal MRI scans of gliomas, was studied. A segmentation methodology based on the design and application of convolutional neural networks (CNNs) combined with original post-processing techniques with low computational demand was proposed. The post-processing techniques were the main responsible for the results obtained in the segmentations. The segmented regions were the whole tumor, the tumor core, and the enhancing tumor core, obtaining averaged Dice coefficients equal to 0.8934, 0.8376, and 0.8113, respectively. These results reached the state of the art in glioma segmentation determined by the winners of the challenge.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.