Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Approximation Theory of Total Variation Minimization for Data Completion (2207.07473v1)

Published 15 Jul 2022 in math.AP, cs.NA, math.NA, math.ST, and stat.TH

Abstract: Total variation (TV) minimization is one of the most important techniques in modern signal/image processing, and has wide range of applications. While there are numerous recent works on the restoration guarantee of the TV minimization in the framework of compressed sensing, there are few works on the restoration guarantee of the restoration from partial observations. This paper is to analyze the error of TV based restoration from random entrywise samples. In particular, we estimate the error between the underlying original data and the approximate solution that interpolates (or approximates with an error bound depending on the noise level) the given data that has the minimal TV seminorm among all possible solutions. Finally, we further connect the error estimate for the discrete model to the sparse gradient restoration problem and to the approximation to the underlying function from which the underlying true data comes.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.