Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

PoLyScriber: Integrated Fine-tuning of Extractor and Lyrics Transcriber for Polyphonic Music (2207.07336v4)

Published 15 Jul 2022 in eess.AS, cs.SD, and eess.SP

Abstract: Lyrics transcription of polyphonic music is challenging as the background music affects lyrics intelligibility. Typically, lyrics transcription can be performed by a two-step pipeline, i.e. a singing vocal extraction front end, followed by a lyrics transcriber back end, where the front end and back end are trained separately. Such a two-step pipeline suffers from both imperfect vocal extraction and mismatch between front end and back end. In this work, we propose a novel end-to-end integrated fine-tuning framework, that we call PoLyScriber, to globally optimize the vocal extractor front end and lyrics transcriber back end for lyrics transcription in polyphonic music. The experimental results show that our proposed PoLyScriber achieves substantial improvements over the existing approaches on publicly available test datasets.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.